Pluto


Publications

Publications



id Category Year Listing
1-Mission Science (Pluto-System) 2016 Bagenal, F., et al., 2016. Pluto' interaction with its space environment: Solar wind, energetic particles, and dust. Science 351. https://doi.org/10.1126/science.aad9045
7-Spacecraft, Mission Design, Mission Operations 2016 Bauer, B., et al., 2016. Lessons Learned from the New Horizons July 4th Anomaly. AIAA SpaceOps 2016.
7-Spacecraft, Mission Design, Mission Operations 2010 Bowman, A., 2010. Spacecraft Hibernation: Concept vs. Reality, A Mission Operations Manager's Perspective. AIAA.
7-Spacecraft, Mission Design, Mission Operations 2004 Bowman, A., Chacos, A. A., DeBoy, C. C., Furrow, R. M., Whittenburg, K. E., 2004. New Horizons Mission to Pluto/Charon: Reducting Costs of a Long-Duration Mission., 55th International Astronautical Congress, Vacouver, Canada.
7-Spacecraft, Mission Design, Mission Operations 2016 Bucior, S. E., Sepan, B., Jones, D., 2016. New Horizons and the Pluto flyby: A flight control team's story. IEEE, Aerospace Conference.
7-Spacecraft, Mission Design, Mission Operations 2007 Bushman, S. S., 2007. In-Space Performance of the New Horizons Propulsion System. AIAA.
7-Spacecraft, Mission Design, Mission Operations 2007 Chang, Y., Lear, M. H., McGrath, B. E., Heyler, G. A., Takashima, N., Owings, W. D., 2007. New Horizons Launch Contingency Effort. In: El-Genik, M. S., (Ed.), Space Technology and Applications International Forum-STAIF 2007, Vol. 880, pp. 590-596.
7-Spacecraft, Mission Design, Mission Operations 2008 Cheng, A. F., et al., 2008. Long-Range Reconnaissance Imager on New Horizons. Space Science Reviews 140, 189-215.
7-Spacecraft, Mission Design, Mission Operations 2010 Flanigan, et al., S. H., 2010. Destination Pluto: Performance During the Approach Phase. IAF, 66th International Congress.
7-Spacecraft, Mission Design, Mission Operations 2008 Fountain, G. H., et al., 2008. The New Horizons Spacecraft. Space Science Reviews 140, 23-47.
7-Spacecraft, Mission Design, Mission Operations 2008 Guo, Y., Farquhar, R. W., 2008. New Horizons Mission Design. Space Science Reviews 140, 49-74.
7-Spacecraft, Mission Design, Mission Operations 2008 Hamilton, S., Hart, H. M., 2008. Operational Pre-Planning For Intensive Science Periods" The New Horizons Jupiter Flyby. AIAA Space 2008 Conference and Expostion, San Diego, CA.
7-Spacecraft, Mission Design, Mission Operations 2016 Harch, A., et al., 2016. Accommodating Navigation Uncertainties in the Pluto Encounter Sequence Design. AIAA, SpaceOps 2016.
7-Spacecraft, Mission Design, Mission Operations 2007 Harmon, B. A., Bohne, W. A., 2007. A Look Back at Assembly and Test of the New Horizons Radioisotope Power System. In: El-Genik, M. S., (Ed.), Space Technology and Applications International Forum-STAIF 2007, Vol. 880, pp. 339-346.
7-Spacecraft, Mission Design, Mission Operations 2006 Hersman, C. B., et al., 2006. Optimization of the New Horizons Spacecraft Power Demand for a Single Radioisotope Thermoelectric Generator. 57th International Astrounautical Congress, Vol. IAC-06-C3.4.05, Valencia, Spain.
7-Spacecraft, Mission Design, Mission Operations 2008 Horányi, M., et al., 2008. The Student Dust Counter on the New Horizons Mission. Space Science Reviews 140, 387-402.
7-Spacecraft, Mission Design, Mission Operations 2015 Jensen, J. R., Weaver, G. L., 2015. Frequency Performance of the New Horizons Ultra-stable Oscillators: Nine years of Continuous In-flight Monitoring. IEEE, International Frequency Control Symposium, Denver, CO.
7-Spacecraft, Mission Design, Mission Operations 2010 Kusnierkiewicz, D., Fountain, G., 2010. New Horizons: A Space Mission of Extreme. INCOSE Insight Article 13, 8-10.
7-Spacecraft, Mission Design, Mission Operations 2008 Kusnierkiewicz, D., et al., 2008. The New Horizons Mission to the Pluto System and the Kuiper Belt: Mission Overview, Engineering Challenges, and Current Status. IEEE Big Sky.
7-Spacecraft, Mission Design, Mission Operations 2006 Kusnierkiewicz, D. Y., et al., 2006. System Engineering Challendges on the New Horizons Project. 57th International Astronautical Congress, Valencia, Spain, pp. IAC-06-D1.5.03.
7-Spacecraft, Mission Design, Mission Operations 2005 Kusnierkiewicz, D. Y., Hersman, C. B., Guo, Y., Kubota, S., McDevitt, J., 2005. A description of the Pluto-bound New Horizons spacecraft. Acta Astronautica 57, 135-144.
7-Spacecraft, Mission Design, Mission Operations 2007 Lear, M., McGrath, B., Takashima, N., Heyler, G., 2007. JHU/APL Breakup Analysis Tool (APLbat) for the New Horizons Radiological Contingency. In: El-Genik, M. S., (Ed.), Space Technology and Applications International Forum-STAIF 2007, Vol. 880, pp. 571-578.
7-Spacecraft, Mission Design, Mission Operations 2008 McComas, D., et al., 2008. The Solar Wind Around Pluto (SWAP) Instrument Aboard New Horizons. Space Science Reviews 140, 261-313.
7-Spacecraft, Mission Design, Mission Operations 2007 McGrath, B. E., Frostbutter, D. A., Chang, Y., 2007. Probabilities of Ground Impact Conditions of the New Horizons Spacecraft and RTG for Near Launch Pad Accidents. In: El-Genik, M. S., (Ed.), Space Technology and Applications International Forum-STAIF 2007, Vol. 880, pp. 579-589.
7-Spacecraft, Mission Design, Mission Operations 2008 McNutt, R. L., et al., 2008. The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on the New Horizons Mission. Space Science Reviews 140, 315-385.
7-Spacecraft, Mission Design, Mission Operations 2008 Reuter, D. C., et al., 2008. Ralph: A Visible/Infrared Imager for the New Horizons Pluto/Kuiper Belt Mission. Space Science Reviews 140, 129-154.
7-Spacecraft, Mission Design, Mission Operations 2016 Rogers, G., et al., 2016. New Horizons Guidance & Control and Propulsion Systems Budgets vs Performance for the Pluto Encounter. AAS, Breckenridge Guidance & Control Conference.
7-Spacecraft, Mission Design, Mission Operations 2016 Rogers, G., Flanigan, Kirk, 2016. New Horizons Trajectory Correction Maneuver Flight Implementation and Performance. AAS, Breckenridge Guidance & Control Conference.
7-Spacecraft, Mission Design, Mission Operations 2010 Rogers, G., Flanigan, S., 2010. Effects of Radioisotope Thermoelectric Generator on Dynamics of the New Horizons Spacecraft. AAS, Breckenridge Guidance & Control Conference.
7-Spacecraft, Mission Design, Mission Operations 2016 Sepan, R., et al., 2016. Preparing and Executing the New Horizons Uplink Occulation: Applying concepts, tools and lessons learned over nearly a decade of flight to execute a successful operation., AIAA, SpaceOps 2016.
7-Spacecraft, Mission Design, Mission Operations 2016 Stanbridge, D. R., et al., 2016. New Horizons Pluto Encounter Maneuver Planning and Analysis. Astronautical Sciences Spaceflight Mechanics 158.
7-Spacecraft, Mission Design, Mission Operations 2008 Stern, S. A., 2008. The New Horizons Pluto Kuiper Belt Mission: An Overview with Historical Context. Space Science Reviews 140, 3-21.
7-Spacecraft, Mission Design, Mission Operations 2008 Stern, S. A., et al., 2008. ALICE: The Ultraviolet Imaging Spectrograph Aboard the New Horizons Pluto-Kuiper Belt Mission. Space Science Reviews 140, 155-187.
7-Spacecraft, Mission Design, Mission Operations 2008 Tyler, G. L., et al., 2008. The New Horizons Radio Science Experiment (REX). Space Science Reviews 140, 217-259.
7-Spacecraft, Mission Design, Mission Operations 2008 Weaver, H. A., Gibson, W. C., Tapley, M. B., Young, L. A., Stern, S. A., 2008. Overview of the New Horizons Science Payload. Space Science Reviews 140, 75-91.
7-Spacecraft, Mission Design, Mission Operations 2008 Young, L. A., et al., 2008. New Horizons: Anticipated Scientific Investigations at the Pluto System. Space Science Reviews 140, 93-127.
1-Mission Science (Pluto-System) 2017 Beyer, R. A., et al., 2017. Charon tectonics. Icarus 287, 161-174. https://doi.org/10.1016/j.icarus.2016.12.018
1-Mission Science (Pluto-System) 2017 Binzel, R. P., et al., 2017. Climate zones on Pluto and Charon. Icarus 287, 30-36. https://doi.org/10.1016/j.icarus.2016.07.023
1-Mission Science (Pluto-System) 2017 Buratti, B. J., et al., 2017. Global albedos of Pluto and Charon from LORRI New Horizons observations. Icarus 287, 207-217. https://doi.org/10.1016/j.icarus.2016.11.012
1-Mission Science (Pluto-System) 2017 Cheng, A. F., et al., 2017. Haze in Pluto's atmosphere. Icarus 290, 112-133. https://doi.org/10.1016/j.icarus.2017.02.024
1-Mission Science (Pluto-System) 2019 Cook, J. C., et al., 2019. The distribution of H2O, CH3OH, and hydrocarbon-ices on Pluto: Analysis of New Horizons spectral images. Icarus 331, 148-169. https://doi.org/10.1016/j.icarus.2018.09.012
1-Mission Science (Pluto-System) 2018 Dalle Ore, C. M., et al., 2018. Ices on Charon: Distribution of H2O and NH3 from New Horizons LEISA observations. Icarus 300, 21-32. https://doi.org/10.1016/j.icarus.2017.08.026
1-Mission Science (Pluto-System) 2017 Earle, A. M., et al., 2017. Long-term surface temperature modeling of Pluto. Icarus 287, 37-46. https://doi.org/10.1016/j.icarus.2016.09.036
7-Spacecraft, Mission Design, Mission Operations 2016 Flanigan, S. H., et al., 2016. Destination pluto: New horizons performance during the approach phase. Acta Astronautica 128, 33-43. http://doi.org/10.1016/j.actaastro.2016.02.029
1-Mission Science (Pluto-System) 2017 Gao, P., et al., 2017. Constraints on the microphysics of Pluto's photochemical haze from New Horizons observations. Icarus 287, 116-123. https://doi.org/10.1016/j.icarus.2016.09.030
1-Mission Science (Pluto-System) 2016 Gladstone, G. R., et al., 2016. The atmosphere of Pluto as observed by New Horizons. Science 351. https://doi.org/10.1126/science.aad8866
1-Mission Science (Pluto-System) 2016 Grundy, W. M., et al., 2016. Surface compositions across Pluto and Charon. Science 351. https://doi.org/10.1126/science.aad9189
1-Mission Science (Pluto-System) 2016 Grundy, W. M., et al., 2016. The formation of Charon's red poles from seasonally cold-trapped volatiles. Nature 539, 65-68. https://doi.org/10.1038/nature19340
1-Mission Science (Pluto-System) 2016 Hamilton, D. P., et al., 2016. The rapid formation of Sputnik Planitia early in Pluto's history. Nature 540, 97-99. https://doi.org/10.1038/nature20586
1-Mission Science (Pluto-System) 2017 Hinson, D. P., et al., 2017. Radio occultation measurements of Pluto's neutral atmosphere with New Horizons. Icarus 290, 96-111. https://doi.org/10.1016/j.icarus.2017.02.031
1-Mission Science (Pluto-System) 2017 Howard, A. D., et al., 2017. Present and past glaciation on Pluto. Icarus 287, 287-300. https://doi.org/10.1016/j.icarus.2016.07.006
1-Mission Science (Pluto-System) 2017 Howard, A. D., et al., 2017. Pluto: Pits and mantles on uplands north and east of Sputnik Planitia. Icarus In press. https://doi.org/10.1016/j.icarus.2017.02.027
1-Mission Science (Pluto-System) 2017 Howett, C. J. A., et al., 2017. Charon's light curves, as observed by New Horizons' Ralph color camera (MVIC) on approach to the Pluto system. Icarus 287, 152-160. https://doi.org/10.1016/j.icarus.2016.09.031
1-Mission Science (Pluto-System) 2017 Howett, C. J. A., et al., 2017. Inflight radiometric calibration of New Horizons' Multispectral Visible Imaging Camera (MVIC). Icarus 287, 140-151. https://doi.org/10.1016/j.icarus.2016.12.007
1-Mission Science (Pluto-System) 2017 Lisse, C. M., et al., 2017. The puzzling detection of x-rays from Pluto by Chandra. Icarus 287, 103-109. https://doi.org/10.1016/j.icarus.2016.07.008
1-Mission Science (Pluto-System) 2016 McComas, D. J., et al., 2016. Pluto's interaction with the solar wind. Journal of Geophysical Research (Space Physics) 121, 4232-4246. https://doi.org/10.1002/2016JA022599
1-Mission Science (Pluto-System) 2016 McKinnon, W. B., et al., 2016. Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour. Nature 534, 82-85. https://doi.org/10.1038/nature18289
1-Mission Science (Pluto-System) 2017 McKinnon, W. B., et al., 2017. Origin of the Pluto-Charon system: Constraints from the New Horizons flyby. Icarus 287, 2-11. https://doi.org/10.1016/j.icarus.2016.11.019
1-Mission Science (Pluto-System) 2017 Moore, J. M., et al., 2017. Sublimation as a landform-shaping process on Pluto. Icarus 287, 320-333. https://doi.org/10.1016/j.icarus.2016.08.025
1-Mission Science (Pluto-System) 2016 Moore, J. M., et al., 2016. The geology of Pluto and Charon through the eyes of New Horizons. Science 351, 1284-1293. https://doi.org/10.1126/science.aad7055
1-Mission Science (Pluto-System) 2016 Nimmo, F., et al., 2016. Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto. Nature 540, 94-96. https://doi.org/10.1038/nature20148
1-Mission Science (Pluto-System) 2017 Nimmo, F., et al., 2017. Mean radius and shape of Pluto and Charon from New Horizons images. Icarus 287, 12-29. https://doi.org/10.1016/j.icarus.2016.06.027
1-Mission Science (Pluto-System) 2017 Olkin, C. B., Ennico, K., Spencer, J. R., 2017. The Pluto System, a Review. Nature Astronomy Under Review.
1-Mission Science (Pluto-System) 2016 Porter, S. B., et al., 2016. The First High-phase Observations of a KBO: New Horizons Imaging of (15810) 1994 JR1 from the Kuiper Belt. The Astrophysical Journal Letters 828. https://doi.org/10.3847/2041-8205/828/2/L15
1-Mission Science (Pluto-System) 2017 Protopapa, S., et al., 2017. Pluto's global surface composition through pixel-by-pixel Hapke modeling of New Horizons Ralph/LEISA data. Icarus 287, 218-228. https://doi.org/10.1016/j.icarus.2016.11.028
1-Mission Science (Pluto-System) 2017 Robbins, S. J., et al., 2017. Craters of the Pluto-Charon system. Icarus 287, 187-206. https://doi.org/10.1016/j.icarus.2016.09.027
1-Mission Science (Pluto-System) 2018 Robbins, S. J., et al., 2017. Investigation of Charon's craters with abrupt terminus ejecta, comparisons with other icy bodies, and formation implications. Journal of Geophysical Research (Planets) 123. https://doi.org/10.1002/2017JE005287
1-Mission Science (Pluto-System) 2017 Schmitt, B., et al., 2017. Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer. Icarus 287, 229-260. https://doi.org/10.1016/j.icarus.2016.12.025
1-Mission Science (Pluto-System) 2015 Stern, S. A., et al., 2015. The Pluto system: Initial results from its exploration by New Horizons. Science 350, id.aad1815. https://doi.org/10.1126/science.aad1815
1-Mission Science (Pluto-System) 2017 Stern, S. A., et al., 2017. Past epochs of significantly higher pressure atmospheres on Pluto. Icarus 287, 47-53. https://doi.org/10.1016/j.icarus.2016.11.022
1-Mission Science (Pluto-System) 2017 Stern, S. A., et al., 2017. New Horizons constraints on Charon's present day atmosphere. Icarus 287, 124-130. https://doi.org/10.1016/j.icarus.2016.09.019
1-Mission Science (Pluto-System) 2017 Umurhan, O. M., et al., 2017. Modeling glacial flow on and onto Pluto's Sputnik Planitia. Icarus 287, 301-319. https://doi.org/10.1016/j.icarus.2017.01.017
1-Mission Science (Pluto-System) 2016 Weaver, H. A., et al., 2016. The small satellites of Pluto as observed by New Horizons. Science 351, aae0030. https://doi.org/10.1126/science.aae0030
1-Mission Science (Pluto-System) 2017 White, O. L., et al., 2017. Geological mapping of Sputnik Planitia on Pluto. Icarus 287, 261-286. https://doi.org/10.1016/j.icarus.2017.01.011
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2017 Wong, M. L., et al., 2017. The photochemistry of Pluto's atmosphere as illuminated by New Horizons. Icarus 287, 110-115. https://doi.org/10.1016/j.icarus.2016.09.028
1-Mission Science (Pluto-System) 2018 Young, L. A., et al., 2018. Structure and composition of Pluto's atmosphere from the New Horizons solar ultraviolet occultation. Icarus 300, 174-199. https://doi.org/10.1016/j.icarus.2017.09.006
1-Mission Science (Pluto-System) 2017 Zangari, A., et. al., 2017. Have stellar occultations probed Charon's chasmata? Icarus Submitted.
1-Mission Science (Pluto-System) 2016 Zirnstein, E. J., et al., 2016. Interplanetary Magnetic Field Sector from Solar Wind around Pluto (SWAP) Measurements of Heavy Ion Pickup near Pluto. The Astrophysical Journal Letters 823. https://doi.org/10.3847/2041-8205/823/2/L30
1-Mission Science (Pluto-System) 2016 Elliott, H. A., McComas, D. J., Valek, P., Nicolaou, G., Weidner, S., Livadiotis, G., 2016. The New Horizons Solar Wind Around Pluto (SWAP) Observations of the Solar Wind from 11-33 au. The Astrophysical Journal Supplement Series 223. https://doi.org/10.3847/0067-0049/223/2/19
1-Mission Science (Pluto-System) 2016 Bertrand, T., Forget, F., 2016. Observed glacier and volatile distribution on Pluto from atmosphere-topography processes. Nature 540, 86-89. https://doi.org/10.1038/nature19337
1-Mission Science (Pluto-System) 2017 Bertrand, T., Forget, F., 2017. 3D modeling of organic haze in Pluto's atmosphere. Icarus 287, 72-86. https://doi.org/10.1016/j.icarus.2017.01.016
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2017 Desch, S. J., Neveu, M., 2017. Differentiation and cryovolcanism on Charon: A view before and after New Horizons. Icarus 287, 175-186. https://doi.org/10.1016/j.icarus.2016.11.037
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2016 Hammond, N. P., Barr, A. C., Parmentier, E. M., 2016. Recent tectonic activity on Pluto driven by phase changes in the ice shell. Geophysical Research Letters 43, 6775-6782. https://doi.org/10.1002/2016GL069220
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2017 Hoey, W. A., Yeoh, S. K., Trafton, L. M., Goldstein, D. B., Varghese, P. L., 2017. Rarefied gas dynamic simulation of transfer and escape in the Pluto-Charon system. Icarus 287, 87-102. https://doi.org/10.1016/j.icarus.2016.12.010
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2016 Johnson, B. C., Bowling, T. J., Trowbridge, A. J., Freed, A. M., 2016. Formation of the Sputnik Planum basin and the thickness of Pluto's subsurface ocean. Geophysical Research Letters 43, 10. https://doi.org/10.1002/2016GL070694
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2016 Keane, J. T., Matsuyama, I., Kamata, S., Steckloff, J. K., 2016. Reorientation and faulting of Pluto due to volatile loading within Sputnik Planitia. Nature 540, 90-93. https://doi.org/10.1038/nature20120
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2016 Mandt, K. E., Mousis, O., Luspay-Kuti, A., 2016. Isotopic constraints on the source of Pluto's nitrogen and the history of atmospheric escape. Planetary and Space Science 130, 104-109. https://doi.org/10.1016/j.pss.2016.02.011
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2017 Moores, J. E., Smith, C. L., Toigo, A. D., Guzewich, S. D., 2017. Penitentes as the origin of the bladed terrain of Tartarus Dorsa on Pluto. Nature 541, 188-190. https://doi.org/10.1038/nature20779
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2017 Sekine, Y., Genda, H., Kamata, S., Funatsu, T., 2017. The Charon-forming giant impact as a source of Pluto's dark equatorial regions. Nature Astronomy 1. https://doi.org/10.1038/s41550-016-0031
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2017 Smullen, R. A., Kratter, K. M., 2017. The fate of debris in the Pluto-Charon system. Monthly Notices of the Royal Astronomical Society 466, 4480-4491. https://doi.org/10.1093/mnras/stw3386
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2016 Trilling, D. E., 2016. The Surface Age of Sputnik Planum, Pluto, Must Be Less than 10 Million Years. PLoS ONE 11, e0147386. https://doi.org/10.1371/journal.pone.0147386
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2016 Trowbridge, A. J., Melosh, H. J., Steckloff, J. K., Freed, A. M., 2016. Vigorous convection as the explanation for Pluto's polygonal terrain. Nature 534, 79-81. https://doi.org/10.1038/nature18016
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2017 Zemcov, M., Immel, P., Nguyen, C., Cooray, A., Lisse, C. M., Poppe, A. R., 2017. Measurement of the cosmic optical background using the long range reconnaissance imager on New Horizons. Nature Communications 8. https://doi.org/10.1038/ncomms15003
1-Mission Science (Pluto-System) 2016 Bagenal, F., et al., 2016. NASA's New Horizons mission to Pluto. COSPAR Space Research Today 195, 9-20.
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2017 Calandra, M. F., Gil-Hutton, R., 2017. Cratering rate on Pluto produced by the inner trans-Neptunian population. Astronomy and Astrophysics 601, id.A116. https://doi.org/10.1051/0004-6361/201628930
7-Spacecraft, Mission Design, Mission Operations 2005 By Stern et al., ALICE: The Ultraviolet Imaging Spectrograph Aboard the New Horizons Pluto Mission Spacecraft, Society of Photo-Optical Instrumentation Engineers,Proceedings of SPIE, Volume 5906, 2005.
8-Additional Articles of Special Interest to New Horizons 1980 Christy, James W. and Robert S. Harrington, Discovery and Orbit of Charon, Icarus, vol. 44, Oct. 1980, pp. 38-40. http://dx.doi.org/10.1016/0019-1035%2880%2990051-2
8-Additional Articles of Special Interest to New Horizons 1930 IAUC 288:PLANET PLUTO; 1930d, International Astronomical Union Circular, no. 00288, 1930. http://www.cbat.eps.harvard.edu/iauc/00200/00288.html
8-Additional Articles of Special Interest to New Horizons 1930 IAUC 289:PLANET PLUTO; 1930c, International Astronomical Union Circular, no. 00289, 1930. http://www.cbat.eps.harvard.edu/iauc/00200/00289.html
7-Spacecraft, Mission Design, Mission Operations 2005 Kusnierkiewicz, David Y. et al., A Description of the Pluto-Bound New Horizons Spacecraft, Acta Astronautica: Infinite Possibilities Global Realities, Selected Proceedings of the 55th International Astronautical Federation Congress, Vancouver, Oct. 4-8, 2004, vol. 57, no. 2-8, July/October 2005, pp. 135-144. http://dx.doi.org/10.1016/j.actaastro.2005.03.030
8-Additional Articles of Special Interest to New Horizons 1980 IAUC 3515: 1978 P 1; Occns BY NEPTUNE; Occn BY URANUS; 1980g, International Astronomical Union Circular, no. 03515, 1980. http://www.cbat.eps.harvard.edu/iauc/03500/03515.html
8-Additional Articles of Special Interest to New Horizons 2002 Stern, Alan, Journey to the Farthest Planet, Scientific American, vol. 286, no. 5, May 2002, p. 56. http://www.scientificamerican.com/article/journey-to-the-farthest-p/
2-Mission Science (Pre-Pluto Encounter) 2002 McKinnon, William B., Planetary Science: Out on the Edge, Nature, vol. 418, no. 6894, July 11, 2002, pp. 135-137. http://dx.doi.org/10.1038/418135a
7-Spacecraft, Mission Design, Mission Operations 2005 Slater et al., Radiometric Performance Results of the New Horizons' ALICE UV Imaging Spectrograph, Society of Photo-Optical Instrumentation Engineers,Proceedings of SPIE, Volume 5906, 2005.
7-Spacecraft, Mission Design, Mission Operations 2005 DeBolt et al., A Regenerative Pseudonoise Range Tracking System for the New Horizons Spacecraft, ION-Institute of Navigation 61st Annual Conference, Cambridge, MA, June 2005, pp. 487-497.
7-Spacecraft, Mission Design, Mission Operations 2006 Guo, Yanping, Farquhar, Robert W., Baseline Design of New Horizons Mission to Pluto and the Kuiper Belt, Acta Astronautica, vol. 58, no. 10, May 2006, pp. 550-559. http://dx.doi.org/10.1016/j.actaastro.2006.01.012
7-Spacecraft, Mission Design, Mission Operations 2005 Morgan et al., Calibration of the New Horizons Long-Range Reconnaissance Imager, Society of Photo-Optical Instrumentation Engineers,Proceedings of SPIE, Volume 5906, 2005.
7-Spacecraft, Mission Design, Mission Operations 2005 Conard et al., Design and Fabrication of the New Horizons Long-Range Reconnaissance Imager, Society of Photo-Optical Instrumentation Engineers,Proceedings of SPIE, Volume 5906, 2005.
7-Spacecraft, Mission Design, Mission Operations 2006 C. B. Haskins et al., Flexible Coherent Digital Transceiver for Low Power Space Missions, 2006 IEEE Aerospace Conference Proceedings, pp. 1-8.
7-Spacecraft, Mission Design, Mission Operations 2006 Troll, John, Schulze, Ron, Measurement Techniques Used to Boresight, Flight Qualify and Align the 2.1-Meter High Gain Antenna for NASA's New Horizons Mission to Pluto, Journal of the CSMC, vol. 1, no. 1, Summer 2006, pp. 6-15. http://www.qualitydigest.com/pdfs/CMSC1.pdf
7-Spacecraft, Mission Design, Mission Operations 2002 Guo, Yanping, Farquhar, Robert W., New Horizons Mission Design for the Pluto-Kuiper Belt Mission, AIAA/AAS Astrodynamics Specialist Conference, Monterey, CA, August 5-8, 2002, AIAA-2002-4722.
7-Spacecraft, Mission Design, Mission Operations 2004 Bowman et al., New Horizons Mission to Pluto/Charon: Reducing Costs of a Long-Duration Mission, 55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, Vancouver, Canada, Oct. 4-8, 2004
7-Spacecraft, Mission Design, Mission Operations 2004 Miller et al., New Horizons Pluto Approach Navigation, From Advances in the Astronautical Sciences, vol. 119, no. I, Space Flight Mechanics 2004, 2005, pp. 529-540, AAS/AIAA Space Flight Mechanics Meeting, Maui, HI, Feb. 8-12, 2004.
7-Spacecraft, Mission Design, Mission Operations 2005 Guo, Yanping, Farquhar, Robert W., New Horizons Pluto-Kuiper Belt Mission: Design and Simulation of the Pluto-Charon Encounter, Acta Astronautica, vol. 56, no. 3, February 2005, pp. 421-429. http://dx.doi.org/10.1016/j.actaastro.2004.05.076
7-Spacecraft, Mission Design, Mission Operations 2006 Ottman, Geffrey K., Hersman, Christopher B., The Pluto-New Horizons RTG and Power System Early Mission Performance, 4th International Energy Conversion Engineering Conference and Exhibit (IECEC), San Diego, CA, June 26-29, 2006, AIAA 2006-4029.
7-Spacecraft, Mission Design, Mission Operations 2004 DeBoy et al., The RF Telecommunications System for the New Horizons Mission to Pluto, 2004 IEEE Aerospace Conference Proceedings, vol. 3, pp. 1463-1476.
7-Spacecraft, Mission Design, Mission Operations 2004 Haskins C. B., Millard, W. P., X-band Digital Receiver for the New Horizons Spacecraft, 2004 IEEE Aerospace Conference Proceedings, vol. 3, pp. 1488+.
2-Mission Science (Pre-Pluto Encounter) 2015 Nimmo F. and Spencer J.R., 2015. Powering Triton's recent geological activity by obliquity tides: Implications for Pluto geology. Icarus, 246, 2-10.
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Rhoden, A. R., Henning, W., Hurford, T. A., & Hamilton, D. P. (2015). The interior and orbital evoluthttps://doi.org/ion of Charon as preserved in its geologic record. Icarus, 246, 11-20. https://doi.org/10.1016/j.icarus.2014.04.030
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Malamud U., Prialnik D. Modeling Kuiper belt objects Charon, Orcus and Salacia by means of a new equation of state for porous icy bodies, Icarus, 246, pp. 21-36, 2015.
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Desch, S. J., 2015. Density of Charon formed from a disk generated by the impact of partially differentiated bodies. Icarus 246, 37-47. https://doi.org/10.1016/j.icarus.2014.07.034
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Neveu, M., Desch, S. J., Shock, E. L., Glein, C. R., 2015. Prerequisites for explosive cryovolcanism on dwarf planet-class Kuiper belt objects. Icarus 246, 48-64. https://doi.org/10.1016/j.icarus.2014.03.043
2-Mission Science (Pre-Pluto Encounter) 2015 Moore, J. M., et al., 2015. Geology before Pluto: Pre-encounter considerations. Icarus 246, 65-81. https://doi.org/10.1016/j.icarus.2014.04.028
2-Mission Science (Pre-Pluto Encounter) 2015 Cruikshank, D. P., et al., 2015. The surface compositions of Pluto and Charon. Icarus 246, 82-92. https://doi.org/10.1016/j.icarus.2014.05.023
2-Mission Science (Pre-Pluto Encounter) 2015 A meta-analysis of coordinate systems and bibliography of their use on Pluto from Charon's discovery to the present day. Zangari (2015, Icarus, 246, 93)
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Barr, A. C., Collins, G. C., 2015. Tectonic activity on Pluto after the Charon-forming impact. Icarus 246, 146-155. http://dx.doi.org/10.1016/j.icarus.2014.03.042
2-Mission Science (Pre-Pluto Encounter) 2015 Bray, V. J., Schenk, P. M., 2015. Pristine impact crater morphology on Pluto - Expectations for New Horizons. Icarus 246, 156-164. https://doi.org/10.1016/j.icarus.2014.05.005
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Bierhaus, E. B., Dones, L., 2015. Craters and ejecta on Pluto and Charon: Anticipated results from the New Horizons flyby. Icarus 246, 165-182. https://doi.org/10.1016/j.icarus.2014.05.044
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Hansen, C. J., Paige, D. A., Young, L. A., 2015. Pluto's climate modeled with new observational constraints. Icarus 246, 183-191. https://doi.org/10.1016/j.icarus.2014.03.014
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Wong, M. L., Yung, Y. L., Randall Gladstone, G., 2015. Pluto's implications for a Snowball Titan. Icarus 246, 192-196. https://doi.org/10.1016/j.icarus.2014.05.019
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Trafton, L. M., 2015. On the state of methane and nitrogen ice on Pluto and Triton: Implications of the binary phase diagram. Icarus 246, 197-205. https://doi.org/10.1016/j.icarus.2014.05.022
2-Mission Science (Pre-Pluto Encounter) 2015 Schindhelm, E., Stern, S. A., Gladstone, R., Zangari, A., 2015. Pluto and Charon's UV spectra from IUE to New Horizons. Icarus 246, 206-212. https://doi.org/10.1016/j.icarus.2014.03.003
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Spectral variability of Charon's 2.21- ?m feature. DeMeo et al. (2015, Icarus, 246, 213)
2-Mission Science (Pre-Pluto Encounter) 2015 Olkin, C. B., et al., 2015. Evidence that Pluto's atmosphere does not collapse from occultations including the 2013 May 04 event. Icarus 246, 220-225. https://doi.org/10.1016/j.icarus.2014.03.026
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Observations of a successive stellar occultation by Charon and graze by Pluto in 2011: Multiwavelength SpeX and MORIS data from the IRTF. Gulbis et al. (2015, Icarus, 246, 226)
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 French, R. G., et al., 2015. Seasonal variations in Pluto's atmospheric tides. Icarus 246, 247-267. https://doi.org/10.1016/j.icarus.2014.05.017
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Exploring the spatial, temporal, and vertical distribution of methane in Pluto's atmosphere. Lellouch et al. (2015, Icarus, 246, 268)
2-Mission Science (Pre-Pluto Encounter) 2015 Randall Gladstone, G., Pryor, W. R., Alan Stern, S., 2015. Ly? @Pluto. Icarus 246, 279-284. https://doi.org/10.1016/j.icarus.2014.04.016
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Production of N2 Vegard-Kaplan and Lyman-Birge-Hopfield emissions on Pluto. Jain and Bhardwaj (2015, Icarus, 246, 285)
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Tucker, O. J., Johnson, R. E., Young, L. A., 2015. Gas transfer in the Pluto-Charon system: A Charon atmosphere. Icarus 246, 291-297. https://doi.org/10.1016/j.icarus.2014.05.002
2-Mission Science (Pre-Pluto Encounter) 2015 Stern, S. A., Gladstone, R., Zangari, A., Fleming, T., Goldstein, D., 2015. Transient atmospheres on Charon and water-ice covered KBOs resulting from comet impacts. Icarus 246, 298-302. https://doi.org/10.1016/j.icarus.2014.03.008
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Pluto's solar wind interaction: Collisional effects. Cravens and Strobel (2015, Icarus, 246, 303)
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Perez-de-Tejada, H., Durand-Manterola, H., Reyes-Ruiz, M., Lundin, R., 2015. Pluto's plasma wake oriented away from the ecliptic plane. Icarus 246, 310-316. https://doi.org/10.1016/j.icarus.2014.06.022
2-Mission Science (Pre-Pluto Encounter) 2015 Brozovic, M., Showalter, M. R., Jacobson, R. A., Buie, M. W., 2015. The orbits and masses of satellites of Pluto. Icarus 246, 317-329. https://doi.org/10.1016/j.icarus.2014.03.015
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Pires, P., Giuliatti Winter, S. M., Gomes, R. S., 2015. The evolution of a Pluto-like system during the migration of the ice giants. Icarus 246, 330-338. https://doi.org/10.1016/j.icarus.2014.04.029
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Giuliatti Winter, S. M., Winter, O. C., Vieira Neto, E., Sfair, R., 2015. The sailboat island and the New Horizons trajectory. Icarus 246, 339-344. https://doi.org/10.1016/j.icarus.2014.04.003
2-Mission Science (Pre-Pluto Encounter) 2015 Throop, H. B., French, R. G., Shoemaker, K., Olkin, C. B., Ruhland, T. R., Young, L. A., 2015. Limits on Pluto's ring system from the June 12 2006 stellar occultation and implications for the New Horizons impact hazard. Icarus 246, 345-351. https://doi.org/10.1016/j.icarus.2014.05.020
2-Mission Science (Pre-Pluto Encounter) 2015 Poppe, A. R., 2015. Interplanetary dust influx to the Pluto-Charon system. Icarus 246, 352-359. https://doi.org/10.1016/j.icarus.2013.12.029
2-Mission Science (Pre-Pluto Encounter) 2015 Porter, S. B., Grundy, W. M., 2015. Ejecta transfer in the Pluto system. Icarus 246, 360-368. https://doi.org/10.1016/j.icarus.2014.03.031
2-Mission Science (Pre-Pluto Encounter) 2015 Benecchi, S. D., et al., 2015. New Horizons: Long-range Kuiper belt targets observed by the Hubble Space Telescope. Icarus 246, 369-374. https://doi.org/10.1016/j.icarus.2014.04.014
1-Mission Science (Pluto-System) 2017 Binzel, R. P., 2017. Undaunted exploration. Nature Astronomy Mission Control Vol 1. https://doi.org/10.1038/s41550-017-0175
1-Mission Science (Pluto-System) 2018 Hinson, D. P., et al., 2018. An upper limit on Pluto's ionosphere from radio occultation measurements with New Horizons. Icarus 307, 17-24. https://doi.org/https://doi.org/10.1016/j.icarus.2018.02.011
1-Mission Science (Pluto-System) 2018 Hofgartner, J. D., et al., 2018. A search for temporal changes on Pluto and Charon. Icarus 302, 273-284. https://doi.org/10.1016/j.icarus.2017.10.044
1-Mission Science (Pluto-System) 2018 Grundy, W. M., et al., 2018. Pluto's haze as a surface material. Icarus 314, 232-245. https://doi.org/10.1016/j.icarus.2018.05.019
1-Mission Science (Pluto-System) 2018 Lauer, T. R., et al., 2018. The New Horizons and Hubble Space Telescope search for rings, dust, and debris in the Pluto-Charon system. Icarus 301, 155-172. https://doi.org/10.1016/j.icarus.2017.09.033
1-Mission Science (Pluto-System) 2017 Linscott, I. R., 2017. Radio Brightness Temperature Measurements of Pluto at 4.2 cm with New Horizons. Submitted.
1-Mission Science (Pluto-System) 2017 Kammer, J. A., et al., 2017. New Horizons Upper Limits on O2 in Pluto's Present Day Atmosphere. The Astronomical Journal 154. https://doi.org/10.3847/1538-3881/aa78a7
1-Mission Science (Pluto-System) 2018 Moore, J. M., et al., 2018. Bladed Terrain on Pluto: Possible Origins and Evolution. Icarus 300, 129-144. https://doi.org/10.1016/j.icarus.2017.08.031
1-Mission Science (Pluto-System) 2016 Schenk, P. M., Nimmo, F., 2016. New Horizons at Pluto. Nature Geosciences Commentary 9, 411-412.
3-Mission Science (Jupiter Encounter) 2014 Io's hot spots in the near-infrared detected by LEISA during the New Horizons flyby. Tsang et al. (2014, Journal of Geophysical Research (Planets), 119, 2222)
3-Mission Science (Jupiter Encounter) 2014 Plasma and energetic particle observations in Jupiter's deep tail near the magnetopause. Kollmann et al. (2014, Journal of Geophysical Research (Space Physics), 119, 6432)
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2014 Io's active volcanoes during the New Horizons era: Insights from New Horizons imaging. Rathbun et al. (2014, Icarus, 231, 261)
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2013 Perspectives on effectively constraining the location of a massive trans-Plutonian object with the New Horizons spacecraft: a sensitivity analysis. Iorio (2013, Celestial Mechanics and Dynamical Astronomy, 116, 357)
3-Mission Science (Jupiter Encounter) 2012 MeV electrons detected by the Alice UV spectrograph during the New Horizons flyby of Jupiter. Steffl et al. (2012, Journal of Geophysical Research (Space Physics), 117, A10222)
7-Spacecraft, Mission Design, Mission Operations 2010 Ebert, R. W., McComas, D. J., Rodriguez, B., Valek, P., Weidner, S., 2010. A Composition Analysis Tool for the Solar Wind Around Pluto (SWAP) Instrument on New Horizons. Space Science Reviews 156, 1-12.
3-Mission Science (Jupiter Encounter) 2010 New Horizons Alice ultraviolet observations of a stellar occultation by Jupiter's atmosphere. Greathouse et al. (2010, Icarus, 208, 293)
2-Mission Science (Pre-Pluto Encounter) 2010 Poppe, A., James, D., Jacobsmeyer, B., & Horányi, M. (2010). First results from the Venetia Burney Student Dust Counter on the New Horizons mission. Geophysical Research Letters, 37(11), n/a–n/a. https://doi.org/10.1029/2003JE002086
3-Mission Science (Jupiter Encounter) 2009 Hill, M. E., et al., 2020. Influence of Solar Disturbances on Galactic Cosmic Rays in the Solar Wind, Heliosheath, and Local Interstellar Medium: Advanced Composition Explorer, New Horizons, and Voyager Observations. The Astrophysical Journal 905, 69. https://doi.org/10.3847/1538-4357/abb408
3-Mission Science (Jupiter Encounter) 2009 Haggerty, D. K., Hill, M. E., McNutt, R. L., & Paranicas, C. (2009). Composition of energetic particles in the Jovian magnetotail. Journal of Geophysical Research, 114(A), 2208. https://doi.org/10.1029/2008JA013659
3-Mission Science (Jupiter Encounter) 2007 Io Volcanism Seen by New Horizons: A Major Eruption of the Tvashtar Volcano. Spencer et al. (2007, Science, 318, 240)
3-Mission Science (Jupiter Encounter) 2007 Io's Atmospheric Response to Eclipse: UV Aurorae Observations. Retherford et al. (2007, Science, 318, 237)
3-Mission Science (Jupiter Encounter) 2007 New Horizons Mapping of Europa and Ganymede. Grundy et al. (2007, Science, 318, 234)
3-Mission Science (Jupiter Encounter) 2007 Clump Detections and Limits on Moons in Jupiter's Ring System. Showalter et al. (2007, Science, 318, 232)
3-Mission Science (Jupiter Encounter) 2007 Jupiter's Nightside Airglow and Aurora. Gladstone et al. (2007, Science, 318, 229)
3-Mission Science (Jupiter Encounter) 2007 Polar Lightning and Decadal-Scale Cloud Variability on Jupiter. Baines et al. (2007, Science, 318, 226)
3-Mission Science (Jupiter Encounter) 2007 Jupiter Cloud Composition, Stratification, Convection, and Wave Motion: A View from New Horizons. Reuter et al. (2007, Science, 318, 223)
3-Mission Science (Jupiter Encounter) 2007 McNutt, R. L., Haggerty, D. K., Hill, M. E., Krimigis, S. M., Livi, S., Ho, G. C., et al. (2007). Energetic Particles in the Jovian Magnetotail. Science, 318(5), 220. https://doi.org/10.1126/science.1148025
3-Mission Science (Jupiter Encounter) 2007 McComas, D. J., Allegrini, F., Bagenal, F., Crary, F., Ebert, R. W., Elliott, H., et al. (2007). Diverse Plasma Populations and Structures in Jupiter’s Magnetotail. Science, 318(5), 217. https://doi.org/10.1126/science.1147393
3-Mission Science (Jupiter Encounter) 2007 New Surprises in the Largest Magnetosphere of Our Solar System. Krupp (2007, Science, 318, 216)
3-Mission Science (Jupiter Encounter) 2007 New Horizons encounters Jupiter. Carroll (2007, Astronomy Now, 21, 22)
1-Mission Science (Pluto-System) 2017 Stern, S. A., et al., 2017. Evidence for Possible Clouds in Pluto's Present-day Atmosphere. The Astronomical Journal 154. https://doi.org/10.3847/1538-3881/aa78ec
2-Mission Science (Pre-Pluto Encounter) 2003 Finding KBO Flyby Targets for New Horizons. Spencer et al. (2003, Earth Moon and Planets, 92, 483)
2-Mission Science (Pre-Pluto Encounter) 2003 New Horizons: The First Reconnaissance Mission to Bodies in the Kuiper Belt. Stern and Spencer (2003, Earth Moon and Planets, 92, 477)
1-Mission Science (Pluto-System) 2019 Singer, K. N., et al., 2019. Impact Craters on Pluto and Charon Indicate a Deficit of Small Kuiper Belt Objects. Science 363. https://doi.org/10.1126/science.aap8628
1-Mission Science (Pluto-System) 2018 Schenk, P. M. et al., Breaking up is hard to do: Global cartography and topography of Pluto's mid-sized icy moon Charon from New Horizons. Icarus 315, 124-145 (2018). https://doi.org/10.1016/j.icarus.2018.06.010
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2017 Quillen, A. C., Nichols-Fleming, F., Chen, Y.-Y., Noyelles, B., 2017. Obliquity evolution of the minor satellites of Pluto and Charon. Icarus 293, 94-113. https://doi.org/10.1016/j.icarus.2017.04.012
2-Mission Science (Pre-Pluto Encounter) 2015 Bagenal, F., et al., 2015. Solar wind at 33 AU: Setting bounds on the Pluto interaction for New Horizons. Journal of Geophysical Research (Planets) 120, 1497-1511. https://doi.org/10.1002/2015JE004880
3-Mission Science (Jupiter Encounter) 2017 McComas, D. J., et al., 2017. Jovian deep magnetotail composition and structure. Journal of Geophysical Research (Space Physics) 122, 1763-1777. https://doi.org/10.1002/2016JA023039
3-Mission Science (Jupiter Encounter) 2014 Nicolaou, G., McComas, D. J., Bagenal, F., Elliott, H. A., 2014. Properties of plasma ions in the distant Jovian magnetosheath using Solar Wind Around Pluto data on New Horizons. Journal of Geophysical Research (Space Physics) 119, 3463-3479. https://doi.org/10.1002/2013JA019665
3-Mission Science (Jupiter Encounter) 2015 Nicolaou, G., McComas, D. J., Bagenal, F., Elliott, H. A., Ebert, R. W., 2015. Jupiter's deep magnetotail boundary layer. Planetary and Space Science 111, 116-125. https://doi.org/10.1016/j.pss.2015.03.020
3-Mission Science (Jupiter Encounter) 2015 Nicolaou, G., McComas, D. J., Bagenal, F., Elliott, H. A., Wilson, R. J., 2015. Plasma properties in the deep jovian magnetotail. Planetary and Space Science 119, 222-232. https://doi.org/10.1016/j.pss.2015.10.001
1-Mission Science (Pluto-System) 2017 Strobel, D. F., Zhu, X., 2017. Comparative planetary nitrogen atmospheres: Density and thermal structures of Pluto and Triton. Icarus 291, 55-64. https://doi.org/10.1016/j.icarus.2017.03.013
8-Additional Articles of Special Interest to New Horizons 2011 Archinal, B. A., et al., 2011. Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009. Celestial Mechanics and Dynamical Astronomy 109, 101-135.
8-Additional Articles of Special Interest to New Horizons 2009 Archinal, B. A., et al., 2011. Erratum to: Reports of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2006 & 2009. Celestial Mechanics and Dynamical Astronomy 110, 401-403.
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Bosh, A. S., et al., 2015. The state of Pluto's atmosphere in 2012-2013. Icarus 246, 237-246. https://doi.org/10.1016/j.icarus.2014.03.048
2-Mission Science (Pre-Pluto Encounter) 2010 Buie, M. W., Grundy, W. M., Young, E. F., Young, L. A., Stern, S. A., 2010. Pluto and Charon with the Hubble Space Telescope. II. Resolving Changes on Pluto's Surface and a Map for Charon. Astron. J. (N. Y.) 139, 1128-1143. https://doi.org/10.1088/0004-6256/139/3/1128
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Cravens, T. E., Strobel, D. F., 2015. Pluto's solar wind interaction: Collisional effects. Icarus 246, 303-309. https://doi.org/10.1016/j.icarus.2014.04.011
2-Mission Science (Pre-Pluto Encounter) 2015 Earle, A. M., Binzel, R. P., 2015. Pluto's insolation history: Latitudinal variations and effects on atmospheric pressure. Icarus 250, 405-412.
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2015 Greenstreet, S., Gladman, B., McKinnon, W. B., 2015. Impact and cratering rates onto Pluto. Icarus 258, 267-288. https://doi.org/10.1016/j.icarus.2015.05.026
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2017 Lellouch, E., et al., 2017. Detection of CO and HCN in Pluto's atmosphere with ALMA. Icarus 286, 289-307. https://doi.org/10.1016/j.icarus.2016.10.013
2-Mission Science (Pre-Pluto Encounter) 2015 McKinnon, W. B., 2015. Introduction to 'Pluto, Charon, and the Kuiper belt objects': Pluto on the eve of the New Horizons encounter. In: Spohn, T., Schubert, G., (Eds.), Treatise on Geophysics. Elsevier.
2-Mission Science (Pre-Pluto Encounter) 2011 Showalter, M. R., Hamilton, D. P., Stern, S. A., Weaver, H. A., Steffl, A. J., Young, L. A., 2011. New Satellite of (134340) Pluto: S/2011 (134340) 1. International Astronomical Union Circular 9221, 1.
2-Mission Science (Pre-Pluto Encounter) 2012 Showalter, M. R., et al., 2012. New Satellite of (134340) Pluto: S/2012 (134340) 1. International Astronomical Union Circular 9253, 1.
2-Mission Science (Pre-Pluto Encounter) 2015 Singer, K. N., Stern, S. A., 2015. On the Provenance of Pluto's Nitrogen (N2). ApJ Letters 808, L50. https://doi.org/10.1088/2041-8205/808/2/L50
2-Mission Science (Pre-Pluto Encounter) 2003 Stern, A., Spencer, J., 2003. New Horizons: The first reconnaissance mission to bodies in the Kuiper belt. Earth, Moon, Planets 92, 477-482. https://doi.org/10.1023/B:MOON.0000031962.33024.33
2-Mission Science (Pre-Pluto Encounter) 2015 Stern, S. A., Porter, S., Zangari, A., 2015. On the roles of escape erosion and the viscous relaxation of craters on Pluto. Icarus 250, 287-293. https://doi.org/10.1016/j.icarus.2014.12.006
2-Mission Science (Pre-Pluto Encounter) 2006 Weaver, H. A., et al., 2006. Discovery of two new satellites of Pluto. Nature 439, 943-945.
2-Mission Science (Pre-Pluto Encounter) 2013 Young, L. A., 2013. Pluto's Seasons: New Predictions for New Horizons. ApJ Letters 766, L22. https://doi.org/10.1088/2041-8205/766/2/L22
7-Spacecraft, Mission Design, Mission Operations 2015 Hamilton, S., Hart, H. M., Bowman, A., Rogers, G., 2015. New Horizons Hibernation Operations: It Takes a Lot of Work to Sleep. IEEE, Aerospace Conference.
7-Spacecraft, Mission Design, Mission Operations 2016 Hamilton, S., Hart, H. M., Whittenburg, K., 2016. A Mission Planner's Perspective: Planning, Development, and Verification of the New Horizons Pluto Flyby Command Sequences. AIAA, SpaceOps 2016.
1-Mission Science (Pluto-System) 2018 Earle, A. M., et al., 2018. Albedo matters: Understanding runaway albedo variations on Pluto. Icarus 303, 1-9. https://doi.org/10.1016/j.icarus.2017.12.015
2-Mission Science (Pre-Pluto Encounter) 2015 McKinnon, W. B., 2015. Exploring the dwarf planets. Nature Physics 11, 608-611. https://doi.org/10.1038/nphys3394
1-Mission Science (Pluto-System) 2018 Bierson, C. J., Nimmo, F., McKinnon, W. B., 2018. Implications of the observed Pluto–Charon density contrast. Icarus 309, 207-219. https://doi.org/10.1016/j.icarus.2018.03.007
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2017 Forget, F., Bertrand, T., Vangvichith, M., Leconte, J., Millour, E., Lellouch, E., 2017. A post-New Horizons global climate model of Pluto including the N2, CH4 and CO cycles. Icarus 287, 54-71. https://doi.org/10.1016/j.icarus.2016.11.038
1-Mission Science (Pluto-System) 2017 Wong, M. L., et al., 2017. The photochemistry of Pluto's atmosphere as illuminated by New Horizons. Icarus 287, 110-115. https://doi.org/10.1016/j.icarus.2016.09.028
1-Mission Science (Pluto-System) 2018 Schenk, P. M., et al., 2018. Basins, fractures and volcanoes: Global cartography and topography of Pluto from New Horizons. Icarus 314, 400-433. https://doi.org/10.1016/j.icarus.2018.06.008
1-Mission Science (Pluto-System) 2017 Olkin, C. B., et al., 2017. The Global Color of Pluto from New Horizons. The Astronomical Journal 154. https://doi.org/10.3847/1538-3881/aa965b
1-Mission Science (Pluto-System) 2018 Cook, J. C., et al., 2018. Composition of Pluto's small satellites: Analysis of New Horizons spectral images. Icarus 315, 30-45. https://doi.org/10.1016/j.icarus.2018.05.024
1-Mission Science (Pluto-System) 2017 Steffl, A. J., 2017. Pluto's Ultraviolet Spectrum, Detection of Airglow Emissions, and Surface Reflectance. The Astronomical Journal Pending submission.
1-Mission Science (Pluto-System) 2018 Verbiscer, A. J., et al., 2018. Phase Curves of Nix and Hydra from the New Horizons Imaging Cameras. The Astrophysical Journal 852. https://doi.org/10.3847/2041-8213/aaa486
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2018 Kwiecinski, J. A., Kovacs, A., Krause, A. L., Planella, F. B., van Gorder, R. A., 2018. Chaotic Dynamics in the Planar Gravitational Many-Body Problem with Rigid Body Rotations. International Journal of Bifurcation and Chaos 28. https://doi.org/10.1142/S0218127418300136
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2018 Pavithraa, S., et al., 2018. Vacuum ultraviolet photoabsorption of prime ice analogues of Pluto and Charon. Spectrochimica Acta Part A: Molecular Spectroscopy 190, 172-176. https://doi.org/10.1016/j.saa.2017.08.060
1-Mission Science (Pluto-System) 2018 Benecchi, S. D., et al., 2018. K2 precision lightcurve: Twelve days in the Pluto-Charon system. Icarus 314, 265-273. https://doi.org/10.1016/j.icarus.2018.05.015
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2018 de Barros, A. L. F., Andrade, D. P. P., da Silveira, E. F., Alcantara, K. F., Boduch, P., Rothard, H., 2018. Chemical reactions in the nitrogen-acetone ice induced by cosmic ray analogues: relevance for the Solar system. Monthly Notices of the Royal Astronomical Society 474, 1469-1481. https://doi.org/10.1093/mnras/stx2751
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2017 Feyerabend, M., Liuzzo, L., Simon, S., Motschmann, U., 2017. A Three-Dimensional Model of Pluto's Interaction With the Solar Wind During the New Horizons Encounter. Journal of Geophysical Research (Space Physics) 122, 10. https://doi.org/10.1002/2017JA024456
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2018 Krasnopolsky, V. A., 2018. Some problems in interpretation of the New Horizons observations of Pluto's atmosphere. Icarus 301, 152-154. https://doi.org/10.1016/j.icarus.2017.08.021
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2018 Plane, J. M. C., et al., 2018. Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces. Space Science Reviews 214. https://doi.org/10.1007/s11214-017-0458-1
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2018 Saxena, P., Renaud, J. P., Henning, W. G., Jutzi, M., Hurford, T., 2018. Relevance of tidal heating on large TNOs. Icarus 302, 245-260. https://doi.org/10.1016/j.icarus.2017.11.023
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2018 Tan, S. P., Kargel, J. S., 2018. Solid-phase equilibria on Pluto's surface. Monthly Notices of the Royal Astronomical Society 474, 4254-4263. https://doi.org/10.1093/mnras/stx3036
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2017 Vasconcelos, F. d. A., Pilling, S., Rocha, W. R. M., Rothard, H., Boduch, P., 2017. Energetic Processing of N2:CH4 Ices Employing X-Rays and Swift Ions: Implications for Icy Bodies in the Outer Solar System. The Astrophysical Journal 850. https://doi.org/10.3847/1538-4357/aa965f
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2017 West, R. A., 2017. Planetary science: Haze cools Pluto's atmosphere. Nature 551, 302-303. https://doi.org/10.1038/551302a
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2017 Zhang, X., Strobel, D. F., Imanaka, H., 2017. Haze heats Pluto's atmosphere yet explains its cold temperature. Nature 551, 352-355. https://doi.org/10.1038/nature24465
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2017 Pasachoff, J. M., et al., 2017. Pluto occultation on 2015 June 29 UTC with central flash and atmospheric spikes just before the New Horizons flyby. Icarus 296, 305-314. https://doi.org/10.1016/j.icarus.2017.05.012
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2017 Mandt, K., et al., 2017. Photochemistry on Pluto: part II HCN and nitrogen isotope fractionation. Monthly Notices of the Royal Astronomical Society 472, 118-128. https://doi.org/10.1093/mnras/stx1587
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2017 Luspay-Kuti, A., et al., 2017. Photochemistry on Pluto - I. Hydrocarbons and aerosols. Monthly Notices of the Royal Astronomical Society 472, 104-117. https://doi.org/10.1093/mnras/stx1362
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2017 Witasse, O., et al., 2017. Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en route to Pluto: Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU. Journal of Geophysical Research (Space Physics) 122, 7865-7890. https://doi.org/10.1002/2017JA023884
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2018 Buhler, P. B., Ingersoll, A. P., 2018. Sublimation pit distribution indicates convection cell surface velocities of ~10 cm per year in Sputnik Planitia, Pluto. Icarus 300, 327-340. https://doi.org/https://doi.org/10.1016/j.icarus.2017.09.018
1-Mission Science (Pluto-System) 2018 Bertrand, T., et al., 2018. The nitrogen cycles on Pluto over seasonal and astronomical timescales. Icarus 309, 277-296. https://doi.org/10.1016/j.icarus.2018.03.012
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2016 Singer, K. N., 2016. Pluto At Last: New Horizons Reveals Worlds of Surprises. The Planetary Report September 2016, pages 13-18. http://www.planetary.org/explore/the-planetary-report/tpr-2016-3.html
1-Mission Science (Pluto-System) 2018 Olkin, C. B., Grundy, W., 2018. A Survey of Pluto’s Surface Composition. In: Badescu, V., Zacny, K., (Eds.), Outer Solar System: Prospective Energy and Material Resources. Springer-Verlag, pp. 3-13. 10.1007/978-3-319-73845-1_1
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2018 Qiang, W., Yongyun, H., Yonggang, L., Douglas, N. C. L., Jun, Y., Adam, P. S., 2018. Young Surface of Pluto’s Sputnik Planitia Caused by Viscous Relaxation. The Astrophysical Journal Letters 856, L14. https://doi.org/10.3847/2041-8213/aab54f
2-Mission Science (Pre-Pluto Encounter) 2006 Stern, S. A., et al., 2006. A giant impact origin for Pluto's small moons and satellite multiplicity in the Kuiper belt. Nature 439, 946-948. https://doi.org/10.1038/nature04548
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2018 Glein, C. R., Waite, J. H., 2018. Primordial N2 provides a cosmochemical explanation for the existence of Sputnik Planitia, Pluto. Icarus 313, 79-92. https://doi.org/10.1016/j.icarus.2018.05.007
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2018 Telfer, M. W., et al., 2018. Dunes on Pluto. Science 360, 992-997. https://doi.org/10.1126/science.aao2975
7-Spacecraft, Mission Design, Mission Operations 2017 Guo, Y., 2017. New Horizons Extended Mission Design to the Kuiper Belt Object 2014 MU69, 27th AAS/AIAA Space Flight Mechanics Meeting.
7-Spacecraft, Mission Design, Mission Operations 2015 Guo, Y., et al., 2015. Trajectory Monitoring and Control of the New Horizons Pluto Flyby, ISSFD. http://issfd.org/2015/files/downloads/papers/066_Guo.pdf
7-Spacecraft, Mission Design, Mission Operations 2011 Guo, Y., 2011. Halfway Flight Performance of the New Horizons Mission, 9th IAA Low Cost Planetary Missions Conference.
7-Spacecraft, Mission Design, Mission Operations 2008 Guo, Y., 2008. Flight of the New Horizons Spacecraft to Pluto and the Kuiper Belt, IAF, 59th International Astronautical Congress.
1-Mission Science (Pluto-System) 2018 Poppe, A. R., Horányi, M., 2018. Interplanetary dust delivery of water to the atmospheres of Pluto and Triton. Astronomy and Astrophysics 617. https://doi.org/10.1051/0004-6361/201833980
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2018 Rannou, P., West, R., 2018. Supersaturation on Pluto and elsewhere. Icarus 312, 36-44. https://doi.org/10.1016/j.icarus.2018.04.025
1-Mission Science (Pluto-System) 2019 Buratti, B. J., et al., 2019. New Horizons Photometry of Pluto's Moon Charon. The Astrophysical Journal 874. https://doi.org/10.3847/2041-8213/ab0bff
5-Mission Science (Arrokoth/2014 MU69) 2019 Stern, S. A., et al., 2019. Initial results from the New Horizons exploration of 2014 MU69, a small Kuiper Belt object. Science 364. https://doi.org/10.1126/science.aaw9771
4-Mission Science (Cruise Science, including Distant KBOs) 2019 Verbiscer, A. J., et al., 2019. Phase Curves from the Kuiper Belt: Photometric Properties of Distant Kuiper Belt Objects Observed by New Horizons. The Astronomical Journal 158. https://doi.org/10.3847/1538-3881/ab3211
1-Mission Science (Pluto-System) 2019 Barnes, N. P., et al., 2019. Constraining the IMF at Pluto Using New Horizons SWAP Data and Hybrid Simulations. Journal of Geophysical Research (Space Physics) 124, 1568-1581. https://doi.org/10.1029/2018JA026083
1-Mission Science (Pluto-System) 2020 Beddingfield, C. B., et al., 2020. Landslides on Charon. Icarus 335, 113383. https://doi.org/10.1016/j.icarus.2019.07.017
1-Mission Science (Pluto-System) 2019 Bertrand, T., et al., 2019. The CH4 cycles on Pluto over seasonal and astronomical timescales. Icarus 329, 148-165. https://doi.org/10.1016/j.icarus.2019.02.007
1-Mission Science (Pluto-System) 2019 Beyer, R. A., et al., 2019. The nature and origin of Charon's smooth plains. Icarus 323, 16-32. https://doi.org/10.1016/j.icarus.2018.12.036
1-Mission Science (Pluto-System) 2019 Bird, M. K., et al., 2019. Radio thermal emission from Pluto and Charon during the New Horizons encounter. Icarus 322, 192-209. https://doi.org/10.1016/j.icarus.2019.01.004
1-Mission Science (Pluto-System) 2019 Conrad, J. W., et al., 2019. An upper bound on Pluto's heat flux from a lack of flexural response of its normal faults. Icarus 328, 210-217. https://doi.org/10.1016/j.icarus.2019.03.028
1-Mission Science (Pluto-System) 2019 Cruikshank, D. P., et al., 2019. Prebiotic Chemistry of Pluto. Astrobiology 19, 831-848. https://doi.org/10.1089/ast.2018.1927
1-Mission Science (Pluto-System) 2019 Cruikshank, D. P., et al., 2019. Recent cryovolcanism in Virgil Fossae on Pluto. Icarus 330, 155-168. https://doi.org/10.1016/j.icarus.2019.04.023
1-Mission Science (Pluto-System) 2018 Earle, A. M., et al., 2018. Methane distribution on Pluto as mapped by the New Horizons Ralph/MVIC instrument. Icarus 314, 195-209. https://doi.org/10.1016/j.icarus.2018.06.005
1-Mission Science (Pluto-System) 2018 Elliott, H. A., et al., 2018. Determining the Alpha to Proton Density Ratio for the New Horizons Solar Wind Observations. The Astrophysical Journal 866. https://doi.org/10.3847/1538-4357/aadba6
1-Mission Science (Pluto-System) 2018 Gladstone, G. R., et al., 2018. The Lyman-alpha Sky Background as Observed by New Horizons. Geophysical Research Letters 45, 8022-8028. https://doi.org/10.1029/2018GL078808
5-Mission Science (Arrokoth/2014 MU69) 2019 Kammer, J. A., et al., 2019. Probing the Hill Sphere of (486958) 2014 MU69. II. Hubble Space Telescope Fine Guidance Sensors Observations during the 2018 August 4 Stellar Occultation. The Astronomical Journal 158. https://doi.org/10.3847/1538-3881/ab3f31
4-Mission Science (Cruise Science, including Distant KBOs) 2019 Kollmann, P., et al., 2019. Suprathermal Ions in the Outer Heliosphere. The Astrophysical Journal 876. https://doi.org/10.3847/1538-4357/ab125f
4-Mission Science (Cruise Science, including Distant KBOs) 2019 Piquette, M., et al., 2019. Student Dust Counter: Status report at 38 AU. Icarus 321, 116-125. https://doi.org/10.1016/j.icarus.2018.11.012
4-Mission Science (Cruise Science, including Distant KBOs) 2019 Poppe, A. R., et al., 2019. Constraining the Solar System's Debris Disk with In Situ New Horizons Measurements from the Edgeworth/Kuiper Belt. The Astrophysical Journal 881. https://doi.org/10.3847/2041-8213/ab322a
7-Spacecraft, Mission Design, Mission Operations 2018 Porter, S. B., et al., 2018. High-precision Orbit Fitting and Uncertainty Analysis of (486958) 2014 MU69. The Astronomical Journal 156. https://doi.org/10.3847/1538-3881/aac2e1
1-Mission Science (Pluto-System) 2018 Stern, S. A., Grundy, W. M., McKinnon, W. B., Weaver, H. A., Young, L. A., 2018. The Pluto System After New Horizons. Annual Review of Astronomy and Astrophysics 56, 357-392. https://doi.org/10.1146/annurev-astro-081817-051935
1-Mission Science (Pluto-System) 2019 White, O. L., et al., 2019. Washboard and fluted terrains on Pluto as evidence for ancient glaciation. Nature Astronomy 3, 62-68. https://doi.org/10.1038/s41550-018-0592-z
1-Mission Science (Pluto-System) 2018 Zirnstein, E. J., et al., 2018. In Situ Observations of Preferential Pickup Ion Heating at an Interplanetary Shock. Physical Review Letters 121. https://doi.org/10.1103/PhysRevLett.121.075102
7-Spacecraft, Mission Design, Mission Operations 2019 Guo, Y., Schlei, W. R., 2019. New Horizons 2014MU69 Flyby Design and Operation. 29th AAS/AIAA Space Flight Mechanics Meeting.
7-Spacecraft, Mission Design, Mission Operations 2019 Stanbridge, D., et al. 2019. Navigation to a Kuiper Belt Object: Maneuver Planning on the Approach to Ultima Thule. 29th AAS/AIAA Space Flight Mechanics Meeting. AAS.
7-Spacecraft, Mission Design, Mission Operations 2019 Bauman, J., 2019. New Horizons' Orbit Determination Performance Throughout the Extended Mission to Ultima Thule. 29th AAS/AIAA Space Flight Mechanics Meeting.
1-Mission Science (Pluto-System) 2019 Robbins, S. J., et al., 2019. Geologic Landforms and Chronostratigraphic History of Charon as Revealed by a Hemispheric Geologic Map. Journal of Geophysical Research (Planets) 124, 155-174. https://doi.org/10.1029/2018JE005684
7-Spacecraft, Mission Design, Mission Operations 2018 Stern, S. A., Weaver, H. A., Spencer, J. R., Elliott, H. A., Team, T. N. H., 2018. The New Horizons Kuiper Belt Extended Mission. Space Science Reviews. https://doi.org/10.1007/s11214-018-0507-4
1-Mission Science (Pluto-System) 2019 Dalle Ore, C. M., et al., 2019. Detection of ammonia on Pluto’s surface in a region of geologically recent tectonism. Science Advances 5, eaav5731. https://doi.org/10.1126/sciadv.aav5731
1-Mission Science (Pluto-System) 2019 Grundy, W. 2019. The Pluto-Charon System. In Oxford Research Encyclopedia of Planetary Science. Ed. Peter Read et al. ISBN:978-0- 190-64792-6. DOI:10.1093/acrefore/9780190647926.013.35.
5-Mission Science (Arrokoth/2014 MU69) 2018 Moore, J. M., et al., 2018. Great Expectations: Plans and Predictions for New Horizons Encounter With Kuiper Belt Object 2014 MU69 ("Ultima Thule"). Geophysical Research Letters 45, 8111-8120. https://doi.org/10.1029/2018GL078996
4-Mission Science (Cruise Science, including Distant KBOs) 2019 Elliott, H. A., et al., 2019. Slowing of the Solar Wind in the Outer Heliosphere. The Astrophysical Journal 885. https://doi.org/10.3847/1538-4357/ab3e49
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2019 Zhao, L. L., Zank, G. P., & Adhikari, L. (2019). Generation Mechanisms for Low-energy Interstellar Pickup Ions. The Astrophysical Journal, 879(1), 32. https://doi.org/10.3847/1538-4357/ab2381
1-Mission Science (Pluto-System) 2019 Kollmann, P., Hill, M. E., Allen, R. C., McNutt, R. L., Brown, L. E., Barnes, N. P., et al. (2019). Pluto's Interaction With Energetic Heliospheric Ions. Journal of Geophysical Research: Space Physics, 124(9), 7413–7424. https://doi.org/10.1029/2019JA026830
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2019 Swaczyna, P., McComas, D. J., & Zirnstein, E. J. (2019). He+ Ions Comoving with the Solar Wind in the Outer Heliosphere. The Astrophysical Journal, 875(1), 36. https://doi.org/10.3847/1538-4357/ab1081
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2018 Zemcov, M., Arcavi, I., Arendt, R., Bachelet, E., Ram Chary, R., Cooray, A., et al. (2018). Astrophysics with New Horizons: Making the Most of a Generational Opportunity. Publications of the Astronomical Society of the Pacific, 130(9), 115001. https://doi.org/10.1088/1538-3873/aadb77
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2018 Zank, G. P., Adhikari, L., Zhao, L. L., Mostafavi, P., Zirnstein, E. J., & McComas, D. J. (2018). The Pickup Ion-mediated Solar Wind. The Astrophysical Journal, 869(1), 23. https://doi.org/10.3847/1538-4357/aaebfe
4-Mission Science (Cruise Science, including Distant KBOs) 2018 Elliott, H. A., Valek, P., McComas, D. J., Delamere, P. A., Bagenal, F., Gladstone, G. R., et al. (2018). Determining the Alpha to Proton Density Ratio for the New Horizons Solar Wind Observations. The Astrophysical Journal, 866(2), 85. https://doi.org/10.3847/1538-4357/aadba6
4-Mission Science (Cruise Science, including Distant KBOs) 2017 McComas, D. J., Zirnstein, E. J., Bzowski, M., Elliott, H. A., Randol, B., Schwadron, N. A., et al. (2017). Interstellar Pickup Ion Observations to 38 au. The Astrophysical Journal Supplement Series, 233(1), 0–0. https://doi.org/10.3847/1538-4365/aa91d2
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2016 Kim, T. K., Pogorelov, N. V., Zank, G. P., Elliott, H. A., & McComas, D. J. (2016). Modeling the Solar Wind at the Ulysses, Voyager, and New Horizons Spacecraft. The Astrophysical Journal, 832(1), 72. https://doi.org/10.3847/0004-637X/832/1/72
4-Mission Science (Cruise Science, including Distant KBOs) 2013 Randol, B. M., McComas, D. J., Schwadron, N. A., 2013. Interstellar Pick-up Ions Observed between 11 and 22 AU by New Horizons. The Astrophysical Journal 768. https://doi.org/10.1088/0004-637X/768/2/120
4-Mission Science (Cruise Science, including Distant KBOs) 2012 Randol, B. M., Elliott, H. A., Gosling, J. T., McComas, D. J., Schwadron, N. A., 2012. Observations of Isotropic Interstellar Pick-up Ions at 11 and 17 AU from New Horizons. The Astrophysical Journal 755. https://doi.org/10.1088/0004-637X/755/1/75
4-Mission Science (Cruise Science, including Distant KBOs) 2013 Szalay, J. R., Piquette, M., Horányi, M., 2013. The Student Dust Counter: Status report at 23 AU. Earth, Planets, and Space 65, 1145-1149. https://doi.org/10.5047/eps.2013.02.005
4-Mission Science (Cruise Science, including Distant KBOs) 2010 McComas, D. J., Elliott, H. A., Schwadron, N. A., 2010. Pickup hydrogen distributions in the solar wind at ?11 AU: Do we understand pickup ions in the outer heliosphere? Journal of Geophysical Research (Space Physics) 115. https://doi.org/10.1029/2009JA014604
1-Mission Science (Pluto-System) 2020 Protopapa, S., et al., 2020. Disk-resolved Photometric Properties of Pluto and the Coloring Materials across its Surface. The Astronomical Journal 159, 74. https://doi.org/10.3847/1538-3881/ab5e82
5-Mission Science (Arrokoth/2014 MU69) 2020 Stern, S. A., Spencer, J. R., Verbiscer, A., Elliott, H. E., Porter, S. P., 2020. Initial results from the exploration of the Kuiper belt by New Horizons. The Trans-Neptunian Solar System, pp. 379-394. https://doi.org/10.1016/B978-0-12-816490-7.00017-5
1-Mission Science (Pluto-System) 2020 Kammer, J. A., et al., 2020. New Horizons Observations of an Ultraviolet Stellar Occultation and Appulse by Pluto’s Atmosphere. The Astronomical Journal 159. https://doi.org/10.3847/1538-3881/ab5a77
1-Mission Science (Pluto-System) 2020 Spencer, J., Grundy, W. M., Nimmo, F., Young, L. A., 2020. The Pluto system after New Horizons. The Trans-Neptunian Solar System, pp. 271-288. https://doi.org/10.1016/B978-0-12-816490-7.00012-6
1-Mission Science (Pluto-System) 2020 Grundy, W., 2020. Pluto and Charon as templates for other large Trans-Neptunian objects. The Trans-Neptunian Solar System, pp. 291-305. https://doi.org/10.1016/B978-0-12-816490-7.00013-8
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2020 Prialnik, D., Barucci, M. A., Young, L., 2020. Book: The Trans-Neptunian Solar System.
1-Mission Science (Pluto-System) 2020 Young, L. A., Braga-Ribas, F., Johnson, R. E., 2020. Volatiles evolution and atmospheres of Trans-Neptunian objects. The Trans-Neptunian Solar System, pp. 127-151.
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2019 Meza, E., et al., 2019. Lower atmosphere and pressure evolution on Pluto from ground-based stellar occultations, 1988-2016. Astronomy and Astrophysics 625. https://doi.org/10.1051/0004-6361/201834281
5-Mission Science (Arrokoth/2014 MU69) 2019 Benecchi, S. D., et al., 2019. The color and binarity of (486958) 2014 MU69 and other long-range New Horizons Kuiper Belt targets. Icarus 334, 22. https://doi.org/10.1016/j.icarus.2019.01.025
5-Mission Science (Arrokoth/2014 MU69) 2019 Benecchi, S. D., et al., 2019. The HST lightcurve of (486958) 2014 MU69. Icarus 334, 11. https://doi.org/10.1016/j.icarus.2019.01.023
7-Spacecraft, Mission Design, Mission Operations 2020 Weaver, H. A., et al., 2020. In-flight Performance and Calibration of the LOng Range Reconnaissance Imager (LORRI) for the New Horizons Mission. Publications of the Astronomical Society of the Pacific 132, 035003. https://doi.org/10.1088/1538-3873/ab67ec
1-Mission Science (Pluto-System) 2020 Bertrand, T., et al., 2020. Pluto's Beating Heart Regulates the Atmospheric Circulation: Results From High-Resolution and Multiyear Numerical Climate Simulations. Journal of Geophysical Research (Planets) 125, e06120. https://doi.org/10.1029/2019je006120
5-Mission Science (Arrokoth/2014 MU69) 2020 Buie, M. W., et al., 2020. Size and Shape Constraints of (486958) Arrokoth from Stellar Occultations. The Astronomical Journal 159, 130. https://doi.org/10.3847/1538-3881/ab6ced
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2020 Young, L. A., Braga-Ribas, F., Johnson, R. E., 2020. Volatiles evolution and atmospheres of Trans-Neptunian objects. The Trans-Neptunian Solar System, pp. 127-151.
5-Mission Science (Arrokoth/2014 MU69) 2020 Spencer, J. R., et al., 2020. The geology and geophysics of Kuiper Belt object (486958) Arrokoth. Science 367, aay3999. https://doi.org/10.1126/science.aay3999
5-Mission Science (Arrokoth/2014 MU69) 2020 McKinnon, W. B., et al., 2020. The solar nebula origin of (486958) Arrokoth, a primordial contact binary in the Kuiper Belt. Science 367, aay6620. https://doi.org/10.1126/science.aay6620
5-Mission Science (Arrokoth/2014 MU69) 2020 Grundy, W. M., et al., 2020. Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth. Science 367, aay3705. https://doi.org/10.1126/science.aay3705
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2020 Ahrens, C. J., 2020. Modeling cryogenic mud volcanism on Pluto. Journal of Volcanology and Geothermal Research 406, 107070. https://doi.org/10.1016/j.jvolgeores.2020.107070
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2019 Ahrens, C. J., Chevrier, V. F., 2019. Compressional Ridges on Baret Montes, Pluto as Observed by New Horizons. Geophysical Research Letters 46, 14,328. https://doi.org/10.1029/2019gl085648
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2020 Arimatsu, K., et al., 2020. Evidence for a rapid decrease of Pluto's atmospheric pressure revealed by a stellar occultation in 2019. Astronomy and Astrophysics 638, L5. https://doi.org/10.1051/0004-6361/202037762
1-Mission Science (Pluto-System) 2020 Bertrand, T., Forget, F., Schmitt, B., White, O. L., Grundy, W. M., 2020. Equatorial mountains on Pluto are covered by methane frosts resulting from a unique atmospheric process. Nature Communications 11, 5056. https://doi.org/10.1038/s41467-020-18845-3
1-Mission Science (Pluto-System) 2020 Bierson, C. J., Nimmo, F., Stern, S. A., 2020. Evidence for a hot start and early ocean formation on Pluto. Nature Geoscience 13, 468. https://doi.org/10.1038/s41561-020-0595-0
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2020 Bromley, B. C., Kenyon, S. J., 2020. A Pluto-Charon Concerto: An Impact on Charon as the Origin of the Small Satellites. The Astronomical Journal 160, 85. https://doi.org/10.3847/1538-3881/ab9e6c
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2020 Correia, A. C. M., 2020. Tidal evolution of the Pluto-Charon binary. Astronomy and Astrophysics 644, A94. https://doi.org/10.1051/0004-6361/202038858
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2019 Kenyon, S. J., Bromley, B. C., 2019. A Pluto-Charon Sonata. III. Growth of Charon from a Circum-Pluto Ring of Debris. The Astronomical Journal 158, 142. https://doi.org/10.3847/1538-3881/ab38b7
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2019 Kenyon, S. J., Bromley, B. C., 2019. A Pluto-Charon Sonata: Dynamical Limits on the Masses of the Small Satellites. The Astronomical Journal 158, 69. https://doi.org/10.3847/1538-3881/ab2890
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2020 Kholshevnikov, K. V., Borukha, M. A., Eskin, B. B., Mikryukov, D. V., 2020. On the asphericity of the figures of Pluto and Charon. Planetary and Space Science 181, 104777. https://doi.org/10.1016/j.pss.2019.104777
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2020 Kimura, J., Kamata, S., 2020. Stability of the subsurface ocean of pluto. Planetary and Space Science 181, 104828. https://doi.org/10.1016/j.pss.2019.104828
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2020 Krasnopolsky, V. A., 2020. On the methylacetylene abundance and nitrogen isotope ratio in Pluto's atmosphere. Planetary and Space Science 192, 105044. https://doi.org/10.1016/j.pss.2020.105044
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2020 Krasnopolsky, V. A., 2020. A photochemical model of Pluto's atmosphere and ionosphere. Icarus 335, 113374. https://doi.org/10.1016/j.icarus.2019.07.008
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2019 Nadeau, A., Jaschke, E., 2019. Stable asymmetric ice belts in an energy balance model of Pluto. Icarus 331, 15. https://doi.org/10.1016/j.icarus.2019.04.032
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2020 Rozner, M., Grishin, E., Perets, H. B., 2020. The wide-binary origin of the Pluto-Charon system. Monthly Notices of the Royal Astronomical Society 497, 5264. https://doi.org/10.1093/mnras/staa2446
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2019 Sori, M. M., Bapst, J., Becerra, P., Byrne, S., 2019. Islands of ice on Mars and Pluto. Journal of Geophysical Research (Planets) 124, 2522. https://doi.org/10.1029/2018je005861
1-Mission Science (Pluto-System) 2020 Steffl, A. J., et al., 2020. Pluto's Ultraviolet Spectrum, Surface Reflectance, and Airglow Emissions. The Astronomical Journal 159, 274. https://doi.org/10.3847/1538-3881/ab8d1c
8-Additional Articles of Special Interest to New Horizons 2020 Stern, S. A., Tapley, M. B., Finley, T. J., Scherrer, J. R., 2020. Pluto Orbiter-Kuiper Belt Explorer: Mission Design for the Gold Standard. Journal of Spacecraft and Rockets 57, 956. https://doi.org/10.2514/1.A34658
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2019 Zotos, E. E., Perdiou, A., Kalantonis, V., 2019. Numerical investigation for the dynamics of the planar circular Pluto-Charon system. Planetary and Space Science 179, 104718. https://doi.org/10.1016/j.pss.2019.104718
1-Mission Science (Pluto-System) 2020 Rhoden, A. R., et al., 2020. Charon: A Brief History of Tides. Journal of Geophysical Research (Planets) 125, e06449. https://doi.org/10.1029/2020je006449
1-Mission Science (Pluto-System) 2020 Cruikshank, D. P., Pendleton, Y. J., Grundy, W. M., 2020. Organic Components of Small Bodies in the Outer Solar System: Some Results of the New Horizons Mission. Life 10, 126. https://doi.org/10.3390/life10080126
1-Mission Science (Pluto-System) 2019 Gladstone, G. R., Young, L. A., 2019. New Horizons Observations of the Atmosphere of Pluto. Annual Review of Earth and Planetary Sciences 47, 119. https://doi.org/10.1146/annurev-earth-053018-060128
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2019 Greenstreet, S., Gladman, B., McKinnon, W. B., Kavelaars, J. J., Singer, K. N., 2019. Crater Density Predictions for New Horizons Flyby Target 2014 MU69. The Astrophysical Journal 872, L5. https://doi.org/10.3847/2041-8213/ab01db
7-Spacecraft, Mission Design, Mission Operations 2019 Nelson, D. S., et al., 2019. Optical Navigation Preparations for the New Horizons Kuiper-Belt Extended Mission. Journal of the Astronautical Sciences 67, 1169. https://doi.org/10.1007/s40295-019-00188-x
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2020 Amarante, A., Winter, O. C., 2020. Surface dynamics, equilibrium points and individual lobes of the Kuiper Belt object (486958) Arrokoth. Monthly Notices of the Royal Astronomical Society 496, 4154. https://doi.org/10.1093/mnras/staa1732
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2020 Zhao, Y., Rezac, L., Skorov, Y., Hu, S. C., Samarasinha, N. H., Li, J.-Y., 2020. Sublimation as an effective mechanism for flattened lobes of (486958) Arrokoth. Nature Astronomy. https://doi.org/10.1038/s41550-020-01218-7
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2020 Grishin, E., Malamud, U., Perets, H. B., Wandel, O., Schäfer, C. M., 2020. The wide-binary origin of (2014) MU69-like Kuiper belt contact binaries. Nature 580, 463. https://doi.org/10.1038/s41586-020-2194-z and Author Correction: https://doi.org/10.1038/s41586-020-2351-4
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2020 Hirabayashi, M., Trowbridge, A. J., Bodewits, D., 2020. The Mysterious Location of Maryland on 2014 MU69 and the Reconfiguration of Its Bilobate Shape. The Astrophysical Journal 891, L12. https://doi.org/10.3847/2041-8213/ab3e74
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Livadiotis, G., 2021. Radial Profile of the Polytropic Index of Solar Wind Plasma in the Heliosphere. Research Notes of the American Astronomical Society 5, 4. https://doi.org/10.3847/2515-5172/abd7fc
4-Mission Science (Cruise Science, including Distant KBOs) 2020 Hill, M. E., et al., 2020. Influence of Solar Disturbances on Galactic Cosmic Rays in the Solar Wind, Heliosheath, and Local Interstellar Medium: Advanced Composition Explorer, New Horizons, and Voyager Observations. The Astrophysical Journal 905, 69. https://doi.org/10.3847/1538-4357/abb408
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2020 Opher, M., Loeb, A., Drake, J., Toth, G., 2020. A small and round heliosphere suggested by magnetohydrodynamic modelling of pick-up ions. Nature Astronomy 4, 675. https://doi.org/10.1038/s41550-020-1036-0
4-Mission Science (Cruise Science, including Distant KBOs) 2020 Keeney, B. A., et al., 2020. The Search for MeV Electrons 2-45 au from the Sun with the Alice Instrument Microchannel Plate Detector on board New Horizons. Research Notes of the American Astronomical Society 4, 61. https://doi.org/10.3847/2515-5172/ab8fa7
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2020 Kimura, J., Kamata, S., 2020. Stability of the subsurface ocean of pluto. Planetary and Space Science 181, 104828. https://doi.org/10.1016/j.pss.2019.104828
1-Mission Science (Pluto-System) 2021 Cruikshank, D. P., et al., 2021. Cryovolcanic flooding in Viking terra on Pluto. Icarus 356, 113786. https://doi.org/10.1016/j.icarus.2020.113786
1-Mission Science (Pluto-System) 2021 Gabasova, L. R., et al., 2021. Global compositional cartography of Pluto from intensity-based registration of LEISA data. Icarus 356, 113833. https://doi.org/10.1016/j.icarus.2020.113833
1-Mission Science (Pluto-System) 2021 Gladstone, G. R., et al., 2021. Constraints on Pluto's H and CH4 profiles from New Horizons Alice Ly ? observations. Icarus 356, 113973. https://doi.org/10.1016/j.icarus.2020.113973
1-Mission Science (Pluto-System) 2021 Hofgartner, J. D., et al., 2021. Photometry of Kuiper belt object (486958) Arrokoth from New Horizons LORRI. Icarus 356, 113723. https://doi.org/10.1016/j.icarus.2020.113723
4-Mission Science (Cruise Science, including Distant KBOs) 2021 Lauer, T. R., et al., 2021. New Horizons observations of the cosmic optical background. The Astrophysical Journal 906, 77. https://doi.org/10.3847/1538-4357/abc881
1-Mission Science (Pluto-System) 2021 Lewis, B. L., et al., 2021. Distribution and energy balance of Pluto's nitrogen ice, as seen by New Horizons in 2015. Icarus 356, 113633. https://doi.org/10.1016/j.icarus.2020.113633
5-Mission Science (Arrokoth/2014 MU69) 2021 Lisse, C. M., et al., 2021. On the origin & thermal stability of Arrokoth's and Pluto's ices. Icarus 356, 114072. https://doi.org/10.1016/j.icarus.2020.114072
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Marohnic, J. C., et al., 2021. Constraining the final merger of contact binary (486958) Arrokoth with soft-sphere discrete element simulations. Icarus 356, 113824. https://doi.org/10.1016/j.icarus.2020.113824
1-Mission Science (Pluto-System) 2021 Martin, C. R., Binzel, R. P., 2021. Ammonia-water freezing as a mechanism for recent cryovolcanism on Pluto. Icarus 356, 113763. https://doi.org/10.1016/j.icarus.2020.113763
5-Mission Science (Arrokoth/2014 MU69) 2021 Schenk, P., et al., 2021. Origins of pits and troughs and degradation on a small primitive planetesimal in the Kuiper belt: High-resolution topography of (486958) Arrokoth (aka 2014 MU69) from New Horizons. Icarus 356, 113834. https://doi.org/10.1016/j.icarus.2020.113834
4-Mission Science (Cruise Science, including Distant KBOs) 2021 Showalter, M. R., et al., 2021. A statistical review of light curves and the prevalence of contact binaries in the Kuiper belt. Icarus 356, 114098. https://doi.org/10.1016/j.icarus.2020.114098
1-Mission Science (Pluto-System) 2021 Skjetne, H. L., et al., 2021. Morphological comparison of blocks in chaos terrains on Pluto, Europa, and Mars. Icarus 356, 113866. https://doi.org/10.1016/j.icarus.2020.113866
1-Mission Science (Pluto-System) 2021 Stern, S. A., et al., 2021. Pluto's far side. Icarus 356, 113805. https://doi.org/10.1016/j.icarus.2020.113805
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Ahrens, C. J., Chevrier, V. F., 2021. Investigation of the morphology and interpretation of Hekla Cavus, Pluto. Icarus 356, 114108. https://doi.org/10.1016/j.icarus.2020.114108
8-Additional Articles of Special Interest to New Horizons 2020 Barbuzano, J., 2020. Arrokoth details reveal how planets form. Sky and Telescope 139, 11.
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Borrelli, M. E., Collins, G. C., 2021. Testing the cryovolcanism and plate bending hypotheses for Charon's smooth plains. Icarus 356, 113717. https://doi.org/10.1016/j.icarus.2020.113717
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Chaufray, J.-Y., 2021. Departure of the thermal escape rate from the jeans escape rate for atomic hydrogen at Earth, Mars, and Pluto. Planetary and Space Science 198, 105178. https://doi.org/10.1016/j.pss.2021.105178
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Chen, S., Young, E. F., Young, L. A., Bertrand, T., Forget, F., Yung, Y. L., 2021. Global climate model occultation lightcurves tested by August 2018 ground-based stellar occultation. Icarus 356, 113976. https://doi.org/10.1016/j.icarus.2020.113976
1-Mission Science (Pluto-System) 2021 Conrad, J. W., Nimmo, F., Beyer, R. A., Bierson, C. J., Schenk, P. M., 2021. Heat flux constraints from variance spectra of Pluto and Charon using limb profile topography. Journal of Geophysical Research (Planets) 126, e06641. https://doi.org/10.1029/2020je006641
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Denton, C. A., Johnson, B. C., Wakita, S., Freed, A. M., Melosh, H. J., Stern, S. A., 2021. Pluto's antipodal terrains imply a thick subsurface ocean and hydrated core. Geophysical Research Letters 48, e91596. https://doi.org/10.1029/2020gl091596
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Hillier, J. H., Buratti, B. J., Hofgartner, J. D., Hicks, M. D., Devins, S., Kivrak, L., 2021. Characteristics of Pluto's haze and surface from an analytic radiative transfer model. The Planetary Science Journal 2, 11. https://doi.org/10.3847/PSJ/abbdaf
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Jacobs, A. D., et al., 2021. LORRI observations of waves in Pluto's atmosphere. Icarus 356, 113825. https://doi.org/10.1016/j.icarus.2020.113825
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Johnson, P. E., et al., 2021. Modeling Pluto's minimum pressure: Implications for haze production. Icarus 356, 114070. https://doi.org/10.1016/j.icarus.2020.114070
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Katz, J. I., Wang, S., 2021. Arrokoth's necklace. Monthly Notices of the Royal Astronomical Society. https://doi.org/10.1093/mnras/stab718
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2020 Lavvas, P., et al., 2020. A major ice component in Pluto's haze. Nature Astronomy. https://doi.org/10.1038/s41550-020-01270-3
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Lyra, W., Youdin, A. N., Johansen, A., 2021. Evolution of MU69 from a binary planetesimal into contact by Kozai-Lidov oscillations and nebular drag. Icarus 356, 113831. https://doi.org/10.1016/j.icarus.2020.113831
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Morbidelli, A., Nesvorny, D., Bottke, W. F., Marchi, S., 2021. A re-assessment of the Kuiper belt size distribution for sub-kilometer objects, revealing collisional equilibrium at small sizes. Icarus 356, 114256. https://doi.org/10.1016/j.icarus.2020.114256
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 O'Hara, S. T., Dombard, A. J., 2021. Downhill sledding at 40 AU: Mobilizing Pluto's chaotic mountain blocks. Icarus 356, 113829. https://doi.org/10.1016/j.icarus.2020.113829
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Renaud, J. P., et al., 2021. Tidal dissipation in dual-body, highly eccentric, and nonsynchronously rotating systems: Applications to Pluto-Charon and the exoplanet trappist-1e. The Planetary Science Journal 2, 4. https://doi.org/10.3847/PSJ/abc0f3
1-Mission Science (Pluto-System) 2021 Robbins, S. J., et al., 2021. Depths of Pluto's and Charon's craters, and their simple-to-complex transition. Icarus 356, 113902. https://doi.org/10.1016/j.icarus.2020.113902
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Rollin, G., Shevchenko, I. I., Lages, J., 2021. Dynamical environments of MU69 and similar objects. Icarus 357, 114178. https://doi.org/10.1016/j.icarus.2020.114178
1-Mission Science (Pluto-System) 2020 Schenk, P. M., Moore, J. M., 2020. Topography and geology of uranian mid-sized icy satellites in comparison with saturnian and plutonian satellites. Philosophical Transactions of the Royal Society of London Series A 378, 20200102. https://doi.org/10.1098/rsta.2020.0102
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Steckloff, J. K., Lisse, C. M., Safrit, T. K., Bosh, A. S., Lyra, W., Sarid, G., 2021. The sublimative evolution of (486958) Arrokoth. Icarus 356, 113998. https://doi.org/10.1016/j.icarus.2020.113998
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Villaça, C. V. N., Crósta, A. P., Grohmann, C. H., 2021. Morphometric analysis of Pluto's impact craters. Remote Sensing 13, 377. https://doi.org/10.3390/rs13030377
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Zhao, Y., Rezac, L., Skorov, Y., Hu, S. C., Samarasinha, N. H., Li, J.-Y., 2021. Sublimation as an effective mechanism for flattened lobes of (486958) Arrokoth. Nature Astronomy 5, 139. https://doi.org/10.1038/s41550-020-01218-7
4-Mission Science (Cruise Science, including Distant KBOs) 2019 Verbiscer, A. J., et al., 2019. Phase curves from the Kuiper belt: Photometric properties of distant Kuiper belt objects observed by New Horizons. The Astronomical Journal 158. https://doi.org/10.3847/1538-3881/ab3211
4-Mission Science (Cruise Science, including Distant KBOs) 2021 McComas, D.J., et al., 2021. Interstellar pickup ion observations halfway to the termination shock. The Astrophysical Journal Supplement Series 254, 19. https://doi.org/10.3847/1538-4365/abee76
7-Spacecraft, Mission Design, Mission Operations 2017 Bushman, S. S., “Performance of the New Horizons Propulsion System through the Pluto System Encounter,” AIAA Paper 2017-4746, AIAA Propulsion and Energy Forum and Exposition 2017, Atlanta, GA, 10-12 July 2017. https://doi.org/10.2514/6.2017-4746
7-Spacecraft, Mission Design, Mission Operations 2012 Bushman, S. S., (2012) “Evaluation of Microorganism Growth in Water–Loaded New Horizons and STEREO Propellant Tanks," 47th Joint Propulsion Conference, AIAA Paper 2011–6115, July 2011, San Diego, CA. https://doi.org/10.2514/6.2011-6115
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Zaveri, N., Malhotra, R., 2021, Pluto's Resonant Orbit Visualized in 4D, Research Notes of the American Astronomical Society 5, 235. https://doi.org/10.3847/2515-5172/ac3086
1-Mission Science (Pluto-System) 2021 Young, L.A., et al., 2021, Pluto's volatile and climate cycles on short and long timescales, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 321-361. https://doi.org/10.2458/azu_uapress_9780816540945-ch014
1-Mission Science (Pluto-System) 2021 White, O.L., et al., 2021, The geology of Pluto, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 55-87. https://doi.org/10.2458/azu_uapress_9780816540945-ch004
4-Mission Science (Cruise Science, including Distant KBOs) 2022 Weaver, H.A., et al., 2022, High-resolution Search for Kuiper Belt Object Binaries from New Horizons, The Planetary Science Journal 3, 46. https://doi.org/10.3847/PSJ/ac4cb7
7-Spacecraft, Mission Design, Mission Operations 2021 Weaver, H.A., 2021, Appendix B: The New Horizons instrument suite, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 641-644. https://doi.org/10.2458/azu_uapress_9780816540945-ch028
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Villaça, C.V.N., Crósta, A.P., Grohmann, C.H., 2021, Morphometric Analysis of Pluto's Impact Craters, Remote Sensing 13, 377. https://doi.org/10.3390/rs13030377
4-Mission Science (Cruise Science, including Distant KBOs) 2022 Verbiscer, A., et al., 2022, The diverse shapes of dwarf planet and large KBO phase curves observed by New Horizons, Planetary Science Journal 3, 95. https://doi.org/10.3847/PSJ/ac63a6
1-Mission Science (Pluto-System) 2021 Umurhan, O.M., Ahrens, C.J., Chevrier, V.F., 2021, Rheological and thermophysical properties and some processes involving common volatile materials found on Pluto's surface, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 195-255. https://doi.org/10.2458/azu_uapress_9780816540945-ch010
1-Mission Science (Pluto-System) 2021 Summers, M.E., et al., 2021, Composition and structure of Pluto's atmosphere, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 257-278. https://doi.org/10.2458/azu_uapress_9780816540945-ch011
1-Mission Science (Pluto-System) 2021 Strobel, D.F., 2021, Atmospheric escape, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 363-377. https://doi.org/10.2458/azu_uapress_9780816540945-ch015
5-Mission Science (Arrokoth/2014 MU69) 2021 Stern, S.A., et al., 2021, The exploration of the primordial Kuiper belt object Arrokoth (2014 MU69), In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 587-601. https://doi.org/10.2458/azu_uapress_9780816540945-ch025
5-Mission Science (Arrokoth/2014 MU69) 2021 Stern, S.A., et al., 2021, Some New Results and Perspectives Regarding the Kuiper Belt Object Arrokoth's Remarkable, Bright Neck, The Planetary Science Journal 2, 87. https://doi.org/10.3847/PSJ/abee26
5-Mission Science (Arrokoth/2014 MU69) 2021 Stern, S.A., et al., 2021, New Investigations of Dark-floored Pits In the Volatile Ice of Sputnik Planitia on Pluto, Astron. J. 162, 207. https://doi.org/10.3847/1538-3881/ac24a6
1-Mission Science (Pluto-System) 2021 Spencer, J.R., et al., 2021, The geology and geophysics of Charon, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 395-412. https://doi.org/10.2458/azu_uapress_9780816540945-ch017
1-Mission Science (Pluto-System) 2021 Soluri, M., 2021, Epilogue: New Horizons - An abbreviated photographic journal, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 603-626. https://doi.org/10.2458/azu_uapress_9780816540945-ch026
1-Mission Science (Pluto-System) 2022 Singer, K.N., et al., 2022, Large-scale cryovolcanic resurfacing on Pluto, Nature Communications 13, 1542. https://doi.org/10.1038/s41467-022-29056-3
1-Mission Science (Pluto-System) 2021 Singer, K.N., et al., 2021, Impact craters on Pluto and Charon and terrain age estimates, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 121-145. https://doi.org/10.2458/azu_uapress_9780816540945-ch007
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Shimoni, Y., Aharonson, O., Rufu, R., 2021, The influence of Equation of State on impact dynamics between Pluto-like bodies, pp. arXiv:2109.05051.
1-Mission Science (Pluto-System) 2021 Scipioni, F., et al., 2021, Pluto's Sputnik Planitia: Composition of geological units from infrared spectroscopy, Icarus 359, 114303. https://doi.org/10.1016/j.icarus.2021.114303
1-Mission Science (Pluto-System) 2021 Schenk, P., et al., 2021, Triton: Topography and Geology of a Probable Ocean World with Comparison to Pluto and Charon, Remote Sensing 13, 3476. https://doi.org/10.3390/rs13173476
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Roser, J.E., et al., 2021, The Infrared Complex Refractive Index of Amorphous Ammonia Ice at 40 K (1.43-22.73 ?m) and Its Relevance to Outer Solar System Bodies, The Planetary Science Journal 2, 240. https://doi.org/10.3847/PSJ/ac3336
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Rollin, G., Shevchenko, I.I., Lages, J., 2021, Dynamical environments of MU69 and similar objects, Icarus 357, 114178. https://doi.org/10.1016/j.icarus.2020.114178
1-Mission Science (Pluto-System) 2021 Robbins, S.J., Singer, K.N., 2021, Pluto and Charon Impact Crater Populations: Reconciling Different Results, The Planetary Science Journal 2, 192. https://doi.org/10.3847/PSJ/ac0e94
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Renaud, J.P., et al., 2021, Tidal Dissipation in Dual-body, Highly Eccentric, and Nonsynchronously Rotating Systems: Applications to Pluto-Charon and the Exoplanet TRAPPIST-1e, The Planetary Science Journal 2, 4. https://doi.org/10.3847/PSJ/abc0f3
1-Mission Science (Pluto-System) 2021 Protopapa, S., et al., 2021, Surface composition of Charon, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 433-456. https://doi.org/10.2458/azu_uapress_9780816540945-ch019
1-Mission Science (Pluto-System) 2021 Porter, S.B., et al., 2021, The small satellites of Pluto, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 457-472. https://doi.org/10.2458/azu_uapress_9780816540945-ch020
4-Mission Science (Cruise Science, including Distant KBOs) 2022 Porter, S.B., et al., 2022, Orbits and Occultation Opportunities of 15 TNOs Observed by New Horizons, The Planetary Science Journal 3, 23. https://doi.org/10.3847/PSJ/ac3491
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Person, M.J., et al., 2021, Haze in Pluto's atmosphere: Results from SOFIA and ground-based observations of the 2015 June 29 Pluto occultation, Icarus 356, 113572. https://doi.org/10.1016/j.icarus.2019.113572
1-Mission Science (Pluto-System) 2021 Parker, A.H., 2021, Transneptunian space and the post-Pluto paradigm, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 545-568. https://doi.org/10.2458/azu_uapress_9780816540945-ch023
1-Mission Science (Pluto-System) 2021 Olkin, C.B., et al., 2021, Colors and photometric properties of Pluto, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 147-163. https://doi.org/10.2458/azu_uapress_9780816540945-ch008
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Oliveira, P.R.B., et al., 2021, Energetic ion irradiation of N2O ices relevant for Solar system surfaces, Mon. Not. R. Astron. Soc. 502, 1423. https://doi.org/10.1093/mnras/stab083
1-Mission Science (Pluto-System) 2021 Nimmo, F., McKinnon, W.B., 2021, Geodynamics of Pluto, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 89-103. https://doi.org/10.2458/azu_uapress_9780816540945-ch005
7-Spacecraft, Mission Design, Mission Operations 2022 Nelson, D.S., et al., 2021, Navigation and Orbit Estimation for New Horizons' Arrokoth Flyby: Overview, Results and Lessons Learned, Space Sci. Rev. 218, 11. https://doi.org/10.1007/s11214-022-00877-4
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Morison, A., Labrosse, S., Choblet, G., 2021, Sublimation-driven convection in Sputnik Planitia on Pluto, Nature 600, 419. https://doi.org/10.1038/s41586-021-04095-w
1-Mission Science (Pluto-System) 2021 Moore, J.M., McKinnon, W.B., 2021, Geologically Diverse Pluto and Charon: Implications for the Dwarf Planets of the Kuiper Belt, Annu. Rev. Earth Planet Sci. 49. https://doi.org/10.1146/annurev-earth-071720-051448
1-Mission Science (Pluto-System) 2021 Moore, J.M., Howard, A.D., 2021, The landscapes of Pluto as witness to climate evolution, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 105-120. https://doi.org/10.2458/azu_uapress_9780816540945-ch006
1-Mission Science (Pluto-System) 2021 McKinnon, W.B., et al., 2021, Formation, composition, and history of the Pluto system: A post-New Horizons synthesis, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 507-543. https://doi.org/10.2458/azu_uapress_9780816540945-ch022
1-Mission Science (Pluto-System) 2021 McGovern, P.J., White, O.L., Schenk, P.M., 2021, Tectonism and Enhanced Cryovolcanic Potential Around a Loaded Sputnik Planitia Basin, Pluto, Journal of Geophysical Research: Planets 126, e2021JE006964. https://doi.org/10.1029/2021JE006964
5-Mission Science (Arrokoth/2014 MU69) 2021 Mao, X., et al., 2021, Collisions of small Kuiper belt objects with (486958) Arrokoth: Implications for its spin evolution and bulk density, JGR Planets 126, e2021JE006961. https://doi.org/10.1029/2021JE006961
1-Mission Science (Pluto-System) 2021 Mandt, K.E., et al., 2021, Photochemistry and haze formation, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 279-296. https://doi.org/10.2458/azu_uapress_9780816540945-ch012
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Mahjoub, A., et al., 2021, Effect of H2S on the Near-infrared Spectrum of Irradiation Residue and Applications to the Kuiper Belt Object (486958) Arrokoth, Astrophys J. 914, L31. https://doi.org/10.3847/2041-8213/ac044b
1-Mission Science (Pluto-System) 2021 Lunine, J.I., et al., 2021, Early Pluto science, the imperative for exploration, and New Horizons, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 9-20. https://doi.org/10.2458/azu_uapress_9780816540945-ch002
1-Mission Science (Pluto-System) 2021 Linscott, I.R., et al., 2021, High-resolution radiometry of Pluto at 4.2 cm with New Horizons, Icarus 363, 114430. https://doi.org/10.1016/j.icarus.2021.114430
1-Mission Science (Pluto-System) 2021 Lauer, T.R., et al., 2021, The Dark Side of Pluto, The Planetary Science Journal 2, 214. https://doi.org/10.3847/PSJ/ac2743
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Kenyon, S.J., Bromley, B.C., 2021, A Pluto-Charon Concerto. II. Formation of a Circumbinary Disk of Debris after the Giant Impact, Astron. J. 161, 211. https://doi.org/10.3847/1538-3881/abe858
1-Mission Science (Pluto-System) 2021 Keeney, B.A., et al., 2021, On Charon's Far-ultraviolet Surface Reflectance, The Planetary Science Journal 2, 164. https://doi.org/10.3847/PSJ/ac16da
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Jovanovi?, L., et al., 2021, Optical constants of Pluto aerosol analogues from UV to near-IR, Icarus 362, 114398. https://doi.org/10.1016/j.icarus.2021.11439
1-Mission Science (Pluto-System) 2021 Johnson, P.E., et al., 2021, New Constraints on Pluto's Sputnik Planitia Ice Sheet from a Coupled Reorientation-Climate Model, The Planetary Science Journal 2, 194. https://doi.org/10.3847/PSJ/ac1d42
1-Mission Science (Pluto-System) 2021 Howett, C.J.A., et al., 2021, Charon: Colors and photometric properties, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 413-432. https://doi.org/10.2458/azu_uapress_9780816540945-ch018
7-Spacecraft, Mission Design, Mission Operations 2021 Houlihan, D., Symons, T., Zemcov, M., 2021, An Assessment of the LEISA Spectrometer for Extragalactic Background Light Measurements, Research Notes of the American Astronomical Society 5, 187. https://doi.org/10.3847/2515-5172/ac1ba9
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Golabek, G.J., Jutzi, M., 2021, Modification of icy planetesimals by early thermal evolution and collisions: Constraints for formation time and initial size of comets and small KBOs, Icarus 363, 114437. https://doi.org/10.1016/j.icarus.2021.114437
4-Mission Science (Cruise Science, including Distant KBOs) 2021 Gladstone, G.R., et al., 2021, New Horizons Detection of the Local Galactic Lyman-? Background, Astron. J. 162, 241. https://doi.org/10.3847/1538-3881/ac23cd
1-Mission Science (Pluto-System) 2021 Forget, F., et al., 2021, Dynamics of Pluto's atmosphere, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 297-319. https://doi.org/10.2458/azu_uapress_9780816540945-ch013
1-Mission Science (Pluto-System) 2021 Fayolle, M., et al., 2021, Testing tholins as analogues of the dark reddish material covering Pluto's Cthulhu region, Icarus 367, 114574. https://doi.org/10.1016/j.icarus.2021.114574
1-Mission Science (Pluto-System) 2021 Cruikshank, D.P., et al., 2021, Surface composition of Pluto, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 165-193. https://doi.org/10.2458/azu_uapress_9780816540945-ch009
1-Mission Science (Pluto-System) 2021 Canup, R.M., Kratter, K.M., Neveu, M., 2021, On the origin of the Pluto system, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 475-506. https://doi.org/10.2458/azu_uapress_9780816540945-ch021
1-Mission Science (Pluto-System) 2021 Buratti, B.J., et al., 2021, Pluto in Glory: Discovery of Its Huge Opposition Surge, Geophys. Res. Lett. 48, e92562. https://doi.org/10.1029/2021gl092562
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Bull, R., et al., 2021, Optical Gravimetry mass measurement performance for small body flyby missions, Planet. Space Sci. 205, 105289. https://doi.org/10.1016/j.pss.2021.105289
1-Mission Science (Pluto-System) 2021 Buie, B.W., et al., 2021, Future exploration of the Pluto system, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 569-586. https://doi.org/10.2458/azu_uapress_9780816540945-ch024
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Bromley, B.C., Kenyon, S.J., 2021, On the Estimation of Circumbinary Orbital Properties, Astron. J. 161, 25. https://doi.org/10.3847/1538-3881/abcbfb
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Boström, M., et al., 2021, Self-preserving ice layers on CO2 clathrate particles: Implications for Enceladus, Pluto, and similar ocean worlds, A & A 650, A54. https://doi.org/10.1051/0004-6361/202040181
1-Mission Science (Pluto-System) 2021 Binzel, R.P., Schindler, K., 2021, The discoveries of Pluto and Kuiper belt, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 3-8. https://doi.org/10.2458/azu_uapress_9780816540945-ch001
1-Mission Science (Pluto-System) 2021 Beyer, R.A., et al., 2021, Charon's Far Side Geomorphology, The Planetary Science Journal 2, 141. https://doi.org/10.3847/PSJ/ac09e9
4-Mission Science (Cruise Science, including Distant KBOs) 2022 Bernardoni, E., et al., 2022, Student Dust Counter Status Report: The First 50 au, The Planetary Science Journal 3, 69. https://doi.org/10.3847/PSJ/ac5ab7
1-Mission Science (Pluto-System) 2021 Barucci, M.A., Dalle Ore, C., Fornasier, S., 2021, The transneptunian objects as the context for Pluto, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 21-52. https://doi.org/10.2458/azu_uapress_9780816540945-ch003
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Bagheri, A., et al., 2021, The Tidal-Thermal Evolution of the Pluto-Charon System, pp. arXiv:2109.13206.
1-Mission Science (Pluto-System) 2021 Bagenal, F., et al., 2021, Solar wind interaction with the Pluto system, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 379-392. https://doi.org/10.2458/azu_uapress_9780816540945-ch016
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Ackley, P.C., et al., 2021, Hybrid dust-tracking method for modeling Io's Tvashtar volcanic plume, Icarus 359, 114274. https://doi.org/10.1016/j.icarus.2020.114274
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2021 Abedin, A.Y., et al., 2021, OSSOS. XXI. Collision Probabilities in the Edgeworth-Kuiper Belt, Astron. J. 161, 195. https://doi.org/10.3847/1538-3881/abe418
5-Mission Science (Arrokoth/2014 MU69) 2022 Umurhan, O.M., et al., 2022. A near-surface temperature model of Arrokoth. The Planetary Science Journal 3, 110. https://doi.org/10.3847/PSJ/ac5d3d
4-Mission Science (Cruise Science, including Distant KBOs) 2022 Lisse, C.M., et al., 2022. A predicted dearth of majority hypervolatile ices in Oort Cloud comets. The Planetary Science Journal 3, 112. https://doi.org/10.3847/PSJ/ac6097
4-Mission Science (Cruise Science, including Distant KBOs) 2022 Lauer, T.R., et al., 2022. Anomalous flux in the cosmic optical background detected with New Horizons observations. Astrophys J. 927, L8. https://doi.org/10.3847/2041-8213/ac573d
5-Mission Science (Arrokoth/2014 MU69) 2022 Keane, J.T., et al., 2022. The geophysical environment of (486958) Arrokoth—a small Kuiper belt object explored by New Horizons. J. Geophys. Res. Planets 127, e07068. https://doi.org/10.1029/2021je007068
5-Mission Science (Arrokoth/2014 MU69) 2022 Gladstone, G.R., et al., 2022. Upper limits on the escape of volatiles from (486958) Arrokoth using New Horizons Alice ultraviolet spectrograph observations. The Planetary Science Journal 3, 111. https://doi.org/10.3847/PSJ/ac6098
1-Mission Science (Pluto-System) 2022 Earle, A.M., et al., 2022. Tracing seasonal trends across Pluto's craters: New Horizons Ralph/MVIC results. Icarus 373, 114771. https://doi.org/10.1016/j.icarus.2021.114771
5-Mission Science (Arrokoth/2014 MU69) 2022 Bird, M.K., et al., 2022. Detection of radio thermal emission from the Kuiper belt object (486958) Arrokoth during the New Horizons encounter. The Planetary Science Journal 3, 109. https://doi.org/10.3847/PSJ/ac5d45
4-Mission Science (Cruise Science, including Distant KBOs) 2022 McComas, D. J., Shrestha, B. L., Swaczyna, P., Rankin, J. S., Weidner, S. E., Zirnstein, E. J., Elliott, H. A. et al. (2022). First High-resolution Observations of Interstellar Pickup Ion Mediated Shocks in the Outer Heliosphere. The Astrophysical Journal, 934(2), 147. https://doi.org/10.3847/1538-4357/AC7956
4-Mission Science (Cruise Science, including Distant KBOs) 2022 Zirnstein, E. J., Möbius, E., Zhang, M., Bower, J., Elliott, H. A., McComas, D. J., et al. (2022). In Situ Observations of Interstellar Pickup Ions from 1 au to the Outer Heliosphere. Space Science Reviews 2022 218:4, 218(4), 1–41. https://doi.org/10.1007/S11214-022-00895-2
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2022 Fraternale, F., Adhikari, L., Fichtner, H., Kim, T. K., Kleimann, J., Oughton, S., et al. (2022). Turbulence in the outer heliosphere. Space Science Reviews, 218(6), 50. https://doi.org/10.1007/s11214-022-00914-2
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2022 Keebler, T. B., Tóth, G., Zieger, B., Opher, M., Keebler, T. B., Tóth, G., et al. (2022). MSWIM2D: Two-dimensional Outer Heliosphere Solar Wind Modeling. Astrophysical Journal, Supplement Series, 260(2), 43. https://doi.org/10.3847/1538-4365/AC67EB
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2022 Richardson, J. D., Burlaga, L. F., Elliott, H. A., Kurth, W. S., Liu, Y. D., & von Steiger, R. (2022). Observations of the Outer Heliosphere, Heliosheath, and Interstellar Medium. Space Science Reviews 2022 218:4, 218(4), 1–42. https://doi.org/10.1007/S11214-022-00899-Y
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2022 Sokól, J. M., Kucharek, H., Baliukin, I. I., Fahr, H., Izmodenov, V. V., Kornbleuth, M., et al. (2022). Interstellar Neutrals, Pickup Ions, and Energetic Neutral Atoms Throughout the Heliosphere: Present Theory and Modeling Overview. Space Science Reviews 2022 218:3, 218(3), 1–55. https://doi.org/10.1007/S11214-022-00883-6
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2022 Lisse, C. M., Gladstone, G. R., Young, L. A., Cruikshank, D. P., Sandford, S. A., Schmitt, B., Stern, S. A., Weaver, H. A., Umurhan, O., Pendleton, Y. J., Keane, J. T., Parker, J. M., Binzel, R. P., Earle, A. M., Horanyi, M., El-Maarry, M., Cheng, A. F., Moore, J. M., McKinnon, W. B., Grundy, W. M., Kavelaars, J. J., Linscott, I. R., Lyra, W., Lewis, B. L., Britt, D. T., Spencer, J. R., Olkin, C. B., McNutt, R. L., Elliott, H. A., Dello-Russo, N., Steckloff, J. K., Neveu, M.,Mousis, O. (2022). A Predicted Dearth of Majority Hypervolatile Ices in Oort Cloud Comets. The Planetary Science Journal, 3(5), 112. https://doi.org/10.3847/PSJ/AC6097
4-Mission Science (Cruise Science, including Distant KBOs) 2023 Brandt, P. C., Provornikova, E., Bale, S. D., Cocoros, A., DeMajistre, R., Dialynas, K., Elliott, H. A. et al. (2023). Future Exploration of the Outer Heliosphere and Very Local Interstellar Medium by Interstellar Probe. Space Science Reviews 2023 219:2, 219(2), 1–71. https://doi.org/10.1007/S11214-022-00943-X
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Fraternale, F., Pogorelov, N. V., & Bera, R. K. (2023). The Role of Electrons and Helium Atoms in Global Modeling of the Heliosphere. The Astrophysical Journal, 946(2), 97. https://doi.org/10.3847/1538-4357/ACBA10
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2022 Kenyon, S.J., Bromley, B.C., 2022, A Pluto-Charon Sonata IV. Improved Constraints on the Dynamical Behavior and Masses of the Small Satellites, Astron. J. 163, 238. https://doi.org/10.3847/1538-3881/ac6188
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2022 Kihoulou, M., Kalousová, K., Sou?ek, O., 2022, Evolution of Pluto's Impact-Deformed Ice Shell Below Sputnik Planitia Basin, J. Geophys. Res. Planets 127, e07221. https://doi.org/10.1029/2022je007221
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2022 Tan, S.P., 2022, Low-pressure and low-temperature phase equilibria applied to Pluto's lower atmosphere, Mon. Not. R. Astron. Soc. 515, 1690-1698. https://doi.org/10.1093/mnras/stac1884
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2022 Ali-Dib, M., 2022, A machine-generated catalogue of Charon's craters and implications for the Kuiper belt, Icarus 386, 115142. https://doi.org/10.1016/j.icarus.2022.115142
1-Mission Science (Pluto-System) 2023 Cook, J.C., et al., 2023, Analysis of Charon's spectrum at 2.21- ?m from New Horizons/LEISA and Earth-based observations, Icarus 389, 115242. https://doi.org/10.1016/j.icarus.2022.115242
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2022 Giuppone, C.A., et al., 2022, Past and present dynamics of the circumbinary moons in the Pluto-Charon system, A & A 658, A99. https://doi.org/10.1051/0004-6361/202141687
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2022 Menten, S.M., Sori, M.M., Bramson, A.M., 2022, Endogenically sourced volatiles on Charon and other Kuiper belt objects, Nature Communications 13, 4457. https://doi.org/10.1038/s41467-022-31846-8
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Rhoden, A.R., Rudolph, M.L., Manga, M., 2023, The challenges of driving Charon's cryovolcanism from a freezing ocean, Icarus 392, 115391. https://doi.org/10.1016/j.icarus.2022.115391
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2022 Teolis, B., et al., 2022, Extreme Exospheric Dynamics at Charon: Implications for the Red Spot, Geophys. Res. Lett. 49, e97580. https://doi.org/10.1029/2021gl097580
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Symons, T., et al., 2023, A Measurement of the Cosmic Optical Background and Diffuse Galactic Light Scaling from the R < 50 au New Horizons-LORRI Data, Astrophys J. 945, 45. https://doi.org/10.3847/1538-4357/acaa37
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2022 Nakayama, K., Yin, W., 2022, Anisotropic cosmic optical background bound for decaying dark matter in light of the LORRI anomaly, Physical Review D 106, 103505. https://doi.org/10.1103/PhysRevD.106.103505
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2022 Simon, J.B., et al., 2022, Comets and Planetesimal Formation, pp. arXiv:2212.04509.
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Carpy, S., Bordiec, M., & Bourgeois, O. (2023). Scaling laws for ablation waves formed by ice sublimation and rock dissolution: Applications to the Earth, Mars and Pluto. Frontiers in Astronomy and Space Sciences, 10, 1176158. https://doi.org/10.3389/fspas.2023.1176158
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Courville, S. W., Castillo-Rogez, J. C., Daswani, M. M., Gloesener, E., Choukroun, M., & O'Rourke, J. G. (2023). Timing and abundance of clathrate formation control ocean evolution in outer Solar System bodies: Challenges of maintaining a thick ocean within Pluto. The Planetary Science Journal, 4, 179. https://doi.org/10.3847/PSJ/acf377
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Denton, C. A., Gosselin, G. J., Freed, A. M., & Johnson, B. C. (2023). The formation and evolution of Pluto's sputnik basin prior to nitrogen ice fill. Icarus, 398, 115541. https://doi.org/10.1016/j.icarus.2023.115541
1-Mission Science (Pluto-System) 2023 Emran, A., Dalle Ore, C. M., Ahrens, C. J., Khan, M. K. H., Chevrier, V. F., & Cruikshank, D. P. (2023). Pluto's surface mapping using unsupervised learning from near-infrared observations of LEISA/ralph. The Planetary Science Journal, 4, 15. https://doi.org/10.3847/PSJ/acb0cc
1-Mission Science (Pluto-System) 2023 Emran, A., Dalle Ore, C. M., Cruikshank, D. P., & Cook, J. C. (2023). Surface composition of Pluto's Kiladze area and relationship to cryovolcanism. Icarus, 404, 115653. https://doi.org/10.1016/j.icarus.2023.115653
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Gakis, D., & Gourgouliatos, K. N. (2023). Orbital analysis of the Pluto-Charon moon system's mutual interactions and forced frequencies. A & A, 670, A152. https://doi.org/10.1051/0004-6361/202244717
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Glein, C. R. (2023). N2 accretion, metamorphism of organic nitrogen, or both processes likely contributed to the origin of Pluto's N2. Icarus, 404, 115651. https://doi.org/10.1016/j.icarus.2023.115651
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Hedgepeth, J. E., Neish, C. D., & Bray, V. J. (2023). Impact crater morphometry on Pluto: Implications for surface composition and evolution. The Planetary Science Journal, 4, 190. https://doi.org/10.3847/PSJ/acf934
1-Mission Science (Pluto-System) 2023 Hofgartner, J. D., Buratti, B. J., Beyer, R. A., Ennico, K., Grundy, W. M., Howett, C. J. A., et al. (2023). Bolometric hemispherical albedo map of Pluto from New Horizons observations. The Planetary Science Journal, 4, 132. https://doi.org/10.3847/PSJ/ace3ab
1-Mission Science (Pluto-System) 2023 Howard, A. D., Moore, J. M., Umurhan, O. M., White, O. L., Singer, K. N., & Schenk, P. M. (2023). Are the surface textures of Pluto's Wright Mons and its surroundings exogenic? Icarus, 405, 115719. https://doi.org/10.1016/j.icarus.2023.115719
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Mandt, K., Luspay-Kuti, A., Mousis, O., & Anderson, S. E. (2023). Surface volatile composition as evidence for hydrothermal processes lasting longer in Triton's interior than Pluto's. The Astrophysical Journal, 959, 57. https://doi.org/10.3847/1538-4357/ad09b5
1-Mission Science (Pluto-System) 2023 McKinnon, W. B., Bland, M. T., Singer, K. N., Schenk, P. M., & Robbins, S. J. (2023). Viscous relaxation of Oort and Edgeworth craters on Pluto: Possible indicators of an epoch of early high heat flow. Journal of Geophysical Research (Planets), 128, e2023JE007831. https://doi.org/10.1029/2023je007831
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Moruzzi, S. A., Andrews-Hanna, J. C., Schenk, P., & Johnson, B. C. (2023). Pluto's Sputnik basin as a peak-ring or multiring basin: A comparative study. Icarus, 405, 115721. https://doi.org/10.1016/j.icarus.2023.115721
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Patocka, V., & Kihoulou, M. (2023). Dynamic reorientation of tidally locked bodies: Application to Pluto. Earth and Planetary Science Letters, 617, 118270. https://doi.org/10.1016/j.epsl.2023.118270
1-Mission Science (Pluto-System) 2023 Porter, S. B., & Canup, R. M. (2023). Orbits and masses of the small satellites of Pluto. The Planetary Science Journal, 4, 120. https://doi.org/10.3847/PSJ/acde77
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Wan, L., Zhang, X., & Hofgartner, J. D. (2023). Constraining thermal emission of Pluto's haze from infrared rotational lightcurves. The Astrophysical Journal, 955, 108. https://doi.org/10.3847/1538-4357/ace9d5
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Wang, J., Fan, S., Liu, C., Natraj, V., Young, L. A., & Yung, Y. L. (2023). Impacts of organic ice condensation on the optical properties of haze on Pluto. The Planetary Science Journal, 4, 17. https://doi.org/10.3847/PSJ/acaf30
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Yuan, Y., Li, F., Fu, Y., Chen, J., Tan, W., Zhang, S., et al. (2023). Reconciling results of 2019 and 2020 stellar occultations on Pluto's atmosphere. New constraints from both the 5 September 2019 event and consistency analysis. Astronomy and Astrophysics, 680, A9. https://doi.org/10.1051/0004-6361/202347477
5-Mission Science (Arrokoth/2014 MU69) 2023 Quirico, E., Bacmann, A., Wolters, C., Augé, B., Flandinet, L., Launois, T., et al. (2023). On a radiolytic origin of red organics at the surface of the Arrokoth trans-neptunian object. Icarus, 394, 115396. https://doi.org/10.1016/j.icarus.2022.115396
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Shevchenko, I. I., Lages, J., Vavilov, D. E., & Rollin, G. (2023). Dynamical environments of (486958) Arrokoth: Prior evolution and present state. Monthly Notices of the Royal Astronomical Society, 520, 4324-4335. https://doi.org/10.1093/mnras/stad289
5-Mission Science (Arrokoth/2014 MU69) 2023 Stern, S. A., White, O. L., Grundy, W. M., Keeney, B. A., Hofgartner, J. D., Nesvorný, D., et al. (2023). The properties and origin of Kuiper belt object Arrokoth's large mounds. The Planetary Science Journal, 4, 176. https://doi.org/10.3847/PSJ/acf317
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Parhi, A., & Prialnik, D. (2023). Sublimation of ices during the early evolution of Kuiper belt objects. Monthly Notices of the Royal Astronomical Society, 522, 2081-2088. https://doi.org/10.1093/mnras/stad1086
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Shannon, A., Doressoundiram, A., Roques, F., Sicardy, B., & Kral, Q. (2023). Understanding the trans-neptunian solar system. Reconciling the results of serendipitous stellar occultations and the inferences from the cratering record. Astronomy and Astrophysics, 673, A138. https://doi.org/10.1051/0004-6361/202040267
4-Mission Science (Cruise Science, including Distant KBOs) 2023 New Horizons APL Tech Digest 2023 - a large collection of excellent review articles about New Horizons available at: https://secwww.jhuapl.edu/techdigest/Home/Detail?Journal=Johns%20Hopkins%20APL%20Technical%20Digest&VolumeId=37&IssueId=1
4-Mission Science (Cruise Science, including Distant KBOs) 2024 Shrestha, B. L. et al. (2024). Suprathermal H+ pickup ion tails in the outer heliosphere. Astron. J., 960(35). https://doi.org/10.3847/1538-4357/ad08b9
7-Spacecraft, Mission Design, Mission Operations 2023 New Horizons APL Tech Digest 2023 - a large collection of excellent review articles about New Horizons available at: https://secwww.jhuapl.edu/techdigest/Home/Detail?Journal=Johns%20Hopkins%20APL%20Technical%20Digest&VolumeId=37&IssueId=1
4-Mission Science (Cruise Science, including Distant KBOs) 2024 Doner, A., Horanyi, M., Bagenal, F., Brandt, P., Grundy, W., Lisse, C., et al. (2024). New Horizons Venetia Burney Student Dust Counter observes higher than expected fluxes approaching 60 AU. arXiv:2401.01230. https://doi.org/10.48550/arXiv.2401.01230
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Bera, R. K., Fraternale, F., Pogorelov, N. V., Roytershteyn, V., Gedalin, M., McComas, D. J., & Zank, G. P. (2023). The role of pickup ions in the interaction of the solar wind with the local interstellar medium. I. Importance of kinetic processes at the heliospheric termination shock. Astrophys J., 954, 147. https://doi.org/10.3847/1538-4357/acea7d
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter) 2023 Maruca, B. A., Qudsi, R. A., Alterman, B. L., Walsh, B. M., Korreck, K. E., Verscharen, D., et al. (2023). The trans-heliospheric survey. Radial trends in plasma parameters across the heliosphere. A & A, 675, A196. https://doi.org/10.1051/0004-6361/202345951
4-Mission Science (Cruise Science, including Distant KBOs) 2023 Livadiotis, G., & McComas, D. J. (2023). Connection between polytropic index and heating. Astrophys J., 956, 88. https://doi.org/10.3847/1538-4357/acf45d