New Horizons
NASA's Mission to Pluto and the Kuiper Belt
Mission
Mission
The New Horizons Mission
Spacecraft
Spacecraft Systems and Components
Payload
Ground Stations
Data Collection
Where is New Horizons?
Current Position
Passing the Planets
Journey through the Kuiper Belt
Science Operations Center
Publications
Q&A
The Path to Pluto and Beyond
Mission Design
Mission Timeline
Launch
Jupiter Encounter
Pluto Flyby
The Path to Arrokoth
2019 Onward
The Team
Arrokoth
Arrokoth
About the Kuiper Belt
About Gerard Kuiper
About Arrokoth (2014 MU69)
Exploring the Kuiper Belt
Publications
Pluto
Pluto
Why Pluto?
About Clyde Tombaugh
The Pluto System
Pluto
Charon
Moons
Publications
News Center
News Center
News Archive
Current
Archives
PI Twitter Feed
The PI's Perspective
Current
Archives
Science Perspective
Pluto Perspective
Discovery Stories
Science Shorts
Media Contacts
Resources
Fact Sheets
Press Kits
Press Conferences
Publications
Glossary
Subscribe to eNews
Galleries
Galleries
Images
Featured Images
Spacecraft Photos
Launch Photos
Event Photos
Raw Images
Arrokoth Encounter
Pluto Encounter
Jupiter Encounter
Podcasts
Videos
Animations
Live Events
Data Movies
Mission Videos
Graphics
Artist Renderings
Exhibit Artwork
Infographics
Posters
Printables
Image/Video Use Policy
Learn
Learn
Interactives
Chat with the Team
Pluto Pals
Names to Pluto
Eyes on the Solar System
Student Dust Counter
Fun Facts
Activities
Educational Materials
Models
Get Involved
Features
Toolkit
Pluto Flyby Memories
Educator Fellows
Parallax Program
Uranus-Neptune Observations
x
Resources
Toolkit
Fact Sheets
Press Kits
Press Conferences
Publications
Glossary
Featured Video
Loading the player...
View all videos »
Pluto
Publications
Publications
id
Category
Year
Listing
1-Mission Science (Pluto-System)
2016
Bagenal, F., et al., 2016. Pluto' interaction with its space environment: Solar wind, energetic particles, and dust. Science 351.
https://doi.org/10.1126/science.aad9045
7-Spacecraft, Mission Design, Mission Operations
2016
Bauer, B., et al., 2016. Lessons Learned from the New Horizons July 4th Anomaly. AIAA SpaceOps 2016.
7-Spacecraft, Mission Design, Mission Operations
2010
Bowman, A., 2010. Spacecraft Hibernation: Concept vs. Reality, A Mission Operations Manager's Perspective. AIAA.
7-Spacecraft, Mission Design, Mission Operations
2004
Bowman, A., Chacos, A. A., DeBoy, C. C., Furrow, R. M., Whittenburg, K. E., 2004. New Horizons Mission to Pluto/Charon: Reducting Costs of a Long-Duration Mission., 55th International Astronautical Congress, Vacouver, Canada.
7-Spacecraft, Mission Design, Mission Operations
2016
Bucior, S. E., Sepan, B., Jones, D., 2016. New Horizons and the Pluto flyby: A flight control team's story. IEEE, Aerospace Conference.
7-Spacecraft, Mission Design, Mission Operations
2007
Bushman, S. S., 2007. In-Space Performance of the New Horizons Propulsion System. AIAA.
7-Spacecraft, Mission Design, Mission Operations
2007
Chang, Y., Lear, M. H., McGrath, B. E., Heyler, G. A., Takashima, N., Owings, W. D., 2007. New Horizons Launch Contingency Effort. In: El-Genik, M. S., (Ed.), Space Technology and Applications International Forum-STAIF 2007, Vol. 880, pp. 590-596.
7-Spacecraft, Mission Design, Mission Operations
2008
Cheng, A. F., et al., 2008. Long-Range Reconnaissance Imager on New Horizons. Space Science Reviews 140, 189-215.
7-Spacecraft, Mission Design, Mission Operations
2010
Flanigan, et al., S. H., 2010. Destination Pluto: Performance During the Approach Phase. IAF, 66th International Congress.
7-Spacecraft, Mission Design, Mission Operations
2008
Fountain, G. H., et al., 2008. The New Horizons Spacecraft. Space Science Reviews 140, 23-47.
7-Spacecraft, Mission Design, Mission Operations
2008
Guo, Y., Farquhar, R. W., 2008. New Horizons Mission Design. Space Science Reviews 140, 49-74.
7-Spacecraft, Mission Design, Mission Operations
2008
Hamilton, S., Hart, H. M., 2008. Operational Pre-Planning For Intensive Science Periods" The New Horizons Jupiter Flyby. AIAA Space 2008 Conference and Expostion, San Diego, CA.
7-Spacecraft, Mission Design, Mission Operations
2016
Harch, A., et al., 2016. Accommodating Navigation Uncertainties in the Pluto Encounter Sequence Design. AIAA, SpaceOps 2016.
7-Spacecraft, Mission Design, Mission Operations
2007
Harmon, B. A., Bohne, W. A., 2007. A Look Back at Assembly and Test of the New Horizons Radioisotope Power System. In: El-Genik, M. S., (Ed.), Space Technology and Applications International Forum-STAIF 2007, Vol. 880, pp. 339-346.
7-Spacecraft, Mission Design, Mission Operations
2006
Hersman, C. B., et al., 2006. Optimization of the New Horizons Spacecraft Power Demand for a Single Radioisotope Thermoelectric Generator. 57th International Astrounautical Congress, Vol. IAC-06-C3.4.05, Valencia, Spain.
7-Spacecraft, Mission Design, Mission Operations
2008
Horányi, M., et al., 2008. The Student Dust Counter on the New Horizons Mission. Space Science Reviews 140, 387-402.
7-Spacecraft, Mission Design, Mission Operations
2015
Jensen, J. R., Weaver, G. L., 2015. Frequency Performance of the New Horizons Ultra-stable Oscillators: Nine years of Continuous In-flight Monitoring. IEEE, International Frequency Control Symposium, Denver, CO.
7-Spacecraft, Mission Design, Mission Operations
2010
Kusnierkiewicz, D., Fountain, G., 2010. New Horizons: A Space Mission of Extreme. INCOSE Insight Article 13, 8-10.
7-Spacecraft, Mission Design, Mission Operations
2008
Kusnierkiewicz, D., et al., 2008. The New Horizons Mission to the Pluto System and the Kuiper Belt: Mission Overview, Engineering Challenges, and Current Status. IEEE Big Sky.
7-Spacecraft, Mission Design, Mission Operations
2006
Kusnierkiewicz, D. Y., et al., 2006. System Engineering Challendges on the New Horizons Project. 57th International Astronautical Congress, Valencia, Spain, pp. IAC-06-D1.5.03.
7-Spacecraft, Mission Design, Mission Operations
2005
Kusnierkiewicz, D. Y., Hersman, C. B., Guo, Y., Kubota, S., McDevitt, J., 2005. A description of the Pluto-bound New Horizons spacecraft. Acta Astronautica 57, 135-144.
7-Spacecraft, Mission Design, Mission Operations
2007
Lear, M., McGrath, B., Takashima, N., Heyler, G., 2007. JHU/APL Breakup Analysis Tool (APLbat) for the New Horizons Radiological Contingency. In: El-Genik, M. S., (Ed.), Space Technology and Applications International Forum-STAIF 2007, Vol. 880, pp. 571-578.
7-Spacecraft, Mission Design, Mission Operations
2008
McComas, D., et al., 2008. The Solar Wind Around Pluto (SWAP) Instrument Aboard New Horizons. Space Science Reviews 140, 261-313.
7-Spacecraft, Mission Design, Mission Operations
2007
McGrath, B. E., Frostbutter, D. A., Chang, Y., 2007. Probabilities of Ground Impact Conditions of the New Horizons Spacecraft and RTG for Near Launch Pad Accidents. In: El-Genik, M. S., (Ed.), Space Technology and Applications International Forum-STAIF 2007, Vol. 880, pp. 579-589.
7-Spacecraft, Mission Design, Mission Operations
2008
McNutt, R. L., et al., 2008. The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on the New Horizons Mission. Space Science Reviews 140, 315-385.
7-Spacecraft, Mission Design, Mission Operations
2008
Reuter, D. C., et al., 2008. Ralph: A Visible/Infrared Imager for the New Horizons Pluto/Kuiper Belt Mission. Space Science Reviews 140, 129-154.
7-Spacecraft, Mission Design, Mission Operations
2016
Rogers, G., et al., 2016. New Horizons Guidance & Control and Propulsion Systems Budgets vs Performance for the Pluto Encounter. AAS, Breckenridge Guidance & Control Conference.
7-Spacecraft, Mission Design, Mission Operations
2016
Rogers, G., Flanigan, Kirk, 2016. New Horizons Trajectory Correction Maneuver Flight Implementation and Performance. AAS, Breckenridge Guidance & Control Conference.
7-Spacecraft, Mission Design, Mission Operations
2010
Rogers, G., Flanigan, S., 2010. Effects of Radioisotope Thermoelectric Generator on Dynamics of the New Horizons Spacecraft. AAS, Breckenridge Guidance & Control Conference.
7-Spacecraft, Mission Design, Mission Operations
2016
Sepan, R., et al., 2016. Preparing and Executing the New Horizons Uplink Occulation: Applying concepts, tools and lessons learned over nearly a decade of flight to execute a successful operation., AIAA, SpaceOps 2016.
7-Spacecraft, Mission Design, Mission Operations
2016
Stanbridge, D. R., et al., 2016. New Horizons Pluto Encounter Maneuver Planning and Analysis. Astronautical Sciences Spaceflight Mechanics 158.
7-Spacecraft, Mission Design, Mission Operations
2008
Stern, S. A., 2008. The New Horizons Pluto Kuiper Belt Mission: An Overview with Historical Context. Space Science Reviews 140, 3-21.
7-Spacecraft, Mission Design, Mission Operations
2008
Stern, S. A., et al., 2008. ALICE: The Ultraviolet Imaging Spectrograph Aboard the New Horizons Pluto-Kuiper Belt Mission. Space Science Reviews 140, 155-187.
7-Spacecraft, Mission Design, Mission Operations
2008
Tyler, G. L., et al., 2008. The New Horizons Radio Science Experiment (REX). Space Science Reviews 140, 217-259.
7-Spacecraft, Mission Design, Mission Operations
2008
Weaver, H. A., Gibson, W. C., Tapley, M. B., Young, L. A., Stern, S. A., 2008. Overview of the New Horizons Science Payload. Space Science Reviews 140, 75-91.
7-Spacecraft, Mission Design, Mission Operations
2008
Young, L. A., et al., 2008. New Horizons: Anticipated Scientific Investigations at the Pluto System. Space Science Reviews 140, 93-127.
1-Mission Science (Pluto-System)
2017
Beyer, R. A., et al., 2017. Charon tectonics. Icarus 287, 161-174.
https://doi.org/10.1016/j.icarus.2016.12.018
1-Mission Science (Pluto-System)
2017
Binzel, R. P., et al., 2017. Climate zones on Pluto and Charon. Icarus 287, 30-36.
https://doi.org/10.1016/j.icarus.2016.07.023
1-Mission Science (Pluto-System)
2017
Buratti, B. J., et al., 2017. Global albedos of Pluto and Charon from LORRI New Horizons observations. Icarus 287, 207-217.
https://doi.org/10.1016/j.icarus.2016.11.012
1-Mission Science (Pluto-System)
2017
Cheng, A. F., et al., 2017. Haze in Pluto's atmosphere. Icarus 290, 112-133.
https://doi.org/10.1016/j.icarus.2017.02.024
1-Mission Science (Pluto-System)
2019
Cook, J. C., et al., 2019. The distribution of H2O, CH3OH, and hydrocarbon-ices on Pluto: Analysis of New Horizons spectral images. Icarus 331, 148-169.
https://doi.org/10.1016/j.icarus.2018.09.012
1-Mission Science (Pluto-System)
2018
Dalle Ore, C. M., et al., 2018. Ices on Charon: Distribution of H2O and NH3 from New Horizons LEISA observations. Icarus 300, 21-32.
https://doi.org/10.1016/j.icarus.2017.08.026
1-Mission Science (Pluto-System)
2017
Earle, A. M., et al., 2017. Long-term surface temperature modeling of Pluto. Icarus 287, 37-46.
https://doi.org/10.1016/j.icarus.2016.09.036
7-Spacecraft, Mission Design, Mission Operations
2016
Flanigan, S. H., et al., 2016. Destination pluto: New horizons performance during the approach phase. Acta Astronautica 128, 33-43.
http://doi.org/10.1016/j.actaastro.2016.02.029
1-Mission Science (Pluto-System)
2017
Gao, P., et al., 2017. Constraints on the microphysics of Pluto's photochemical haze from New Horizons observations. Icarus 287, 116-123.
https://doi.org/10.1016/j.icarus.2016.09.030
1-Mission Science (Pluto-System)
2016
Gladstone, G. R., et al., 2016. The atmosphere of Pluto as observed by New Horizons. Science 351.
https://doi.org/10.1126/science.aad8866
1-Mission Science (Pluto-System)
2016
Grundy, W. M., et al., 2016. Surface compositions across Pluto and Charon. Science 351.
https://doi.org/10.1126/science.aad9189
1-Mission Science (Pluto-System)
2016
Grundy, W. M., et al., 2016. The formation of Charon's red poles from seasonally cold-trapped volatiles. Nature 539, 65-68.
https://doi.org/10.1038/nature19340
1-Mission Science (Pluto-System)
2016
Hamilton, D. P., et al., 2016. The rapid formation of Sputnik Planitia early in Pluto's history. Nature 540, 97-99.
https://doi.org/10.1038/nature20586
1-Mission Science (Pluto-System)
2017
Hinson, D. P., et al., 2017. Radio occultation measurements of Pluto's neutral atmosphere with New Horizons. Icarus 290, 96-111.
https://doi.org/10.1016/j.icarus.2017.02.031
1-Mission Science (Pluto-System)
2017
Howard, A. D., et al., 2017. Present and past glaciation on Pluto. Icarus 287, 287-300.
https://doi.org/10.1016/j.icarus.2016.07.006
1-Mission Science (Pluto-System)
2017
Howard, A. D., et al., 2017. Pluto: Pits and mantles on uplands north and east of Sputnik Planitia. Icarus In press.
https://doi.org/10.1016/j.icarus.2017.02.027
1-Mission Science (Pluto-System)
2017
Howett, C. J. A., et al., 2017. Charon's light curves, as observed by New Horizons' Ralph color camera (MVIC) on approach to the Pluto system. Icarus 287, 152-160.
https://doi.org/10.1016/j.icarus.2016.09.031
1-Mission Science (Pluto-System)
2017
Howett, C. J. A., et al., 2017. Inflight radiometric calibration of New Horizons' Multispectral Visible Imaging Camera (MVIC). Icarus 287, 140-151.
https://doi.org/10.1016/j.icarus.2016.12.007
1-Mission Science (Pluto-System)
2017
Lisse, C. M., et al., 2017. The puzzling detection of x-rays from Pluto by Chandra. Icarus 287, 103-109.
https://doi.org/10.1016/j.icarus.2016.07.008
1-Mission Science (Pluto-System)
2016
McComas, D. J., et al., 2016. Pluto's interaction with the solar wind. Journal of Geophysical Research (Space Physics) 121, 4232-4246.
https://doi.org/10.1002/2016JA022599
1-Mission Science (Pluto-System)
2016
McKinnon, W. B., et al., 2016. Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour. Nature 534, 82-85.
https://doi.org/10.1038/nature18289
1-Mission Science (Pluto-System)
2017
McKinnon, W. B., et al., 2017. Origin of the Pluto-Charon system: Constraints from the New Horizons flyby. Icarus 287, 2-11.
https://doi.org/10.1016/j.icarus.2016.11.019
1-Mission Science (Pluto-System)
2017
Moore, J. M., et al., 2017. Sublimation as a landform-shaping process on Pluto. Icarus 287, 320-333.
https://doi.org/10.1016/j.icarus.2016.08.025
1-Mission Science (Pluto-System)
2016
Moore, J. M., et al., 2016. The geology of Pluto and Charon through the eyes of New Horizons. Science 351, 1284-1293.
https://doi.org/10.1126/science.aad7055
1-Mission Science (Pluto-System)
2016
Nimmo, F., et al., 2016. Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto. Nature 540, 94-96.
https://doi.org/10.1038/nature20148
1-Mission Science (Pluto-System)
2017
Nimmo, F., et al., 2017. Mean radius and shape of Pluto and Charon from New Horizons images. Icarus 287, 12-29.
https://doi.org/10.1016/j.icarus.2016.06.027
1-Mission Science (Pluto-System)
2017
Olkin, C. B., Ennico, K., Spencer, J. R., 2017. The Pluto System, a Review. Nature Astronomy Under Review.
1-Mission Science (Pluto-System)
2016
Porter, S. B., et al., 2016. The First High-phase Observations of a KBO: New Horizons Imaging of (15810) 1994 JR1 from the Kuiper Belt. The Astrophysical Journal Letters 828.
https://doi.org/10.3847/2041-8205/828/2/L15
1-Mission Science (Pluto-System)
2017
Protopapa, S., et al., 2017. Pluto's global surface composition through pixel-by-pixel Hapke modeling of New Horizons Ralph/LEISA data. Icarus 287, 218-228.
https://doi.org/10.1016/j.icarus.2016.11.028
1-Mission Science (Pluto-System)
2017
Robbins, S. J., et al., 2017. Craters of the Pluto-Charon system. Icarus 287, 187-206.
https://doi.org/10.1016/j.icarus.2016.09.027
1-Mission Science (Pluto-System)
2018
Robbins, S. J., et al., 2017. Investigation of Charon's craters with abrupt terminus ejecta, comparisons with other icy bodies, and formation implications. Journal of Geophysical Research (Planets) 123.
https://doi.org/10.1002/2017JE005287
1-Mission Science (Pluto-System)
2017
Schmitt, B., et al., 2017. Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer. Icarus 287, 229-260.
https://doi.org/10.1016/j.icarus.2016.12.025
1-Mission Science (Pluto-System)
2015
Stern, S. A., et al., 2015. The Pluto system: Initial results from its exploration by New Horizons. Science 350, id.aad1815.
https://doi.org/10.1126/science.aad1815
1-Mission Science (Pluto-System)
2017
Stern, S. A., et al., 2017. Past epochs of significantly higher pressure atmospheres on Pluto. Icarus 287, 47-53.
https://doi.org/10.1016/j.icarus.2016.11.022
1-Mission Science (Pluto-System)
2017
Stern, S. A., et al., 2017. New Horizons constraints on Charon's present day atmosphere. Icarus 287, 124-130.
https://doi.org/10.1016/j.icarus.2016.09.019
1-Mission Science (Pluto-System)
2017
Umurhan, O. M., et al., 2017. Modeling glacial flow on and onto Pluto's Sputnik Planitia. Icarus 287, 301-319.
https://doi.org/10.1016/j.icarus.2017.01.017
1-Mission Science (Pluto-System)
2016
Weaver, H. A., et al., 2016. The small satellites of Pluto as observed by New Horizons. Science 351, aae0030.
https://doi.org/10.1126/science.aae0030
1-Mission Science (Pluto-System)
2017
White, O. L., et al., 2017. Geological mapping of Sputnik Planitia on Pluto. Icarus 287, 261-286.
https://doi.org/10.1016/j.icarus.2017.01.011
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2017
Wong, M. L., et al., 2017. The photochemistry of Pluto's atmosphere as illuminated by New Horizons. Icarus 287, 110-115.
https://doi.org/10.1016/j.icarus.2016.09.028
1-Mission Science (Pluto-System)
2018
Young, L. A., et al., 2018. Structure and composition of Pluto's atmosphere from the New Horizons solar ultraviolet occultation. Icarus 300, 174-199.
https://doi.org/10.1016/j.icarus.2017.09.006
1-Mission Science (Pluto-System)
2017
Zangari, A., et. al., 2017. Have stellar occultations probed Charon's chasmata? Icarus Submitted.
1-Mission Science (Pluto-System)
2016
Zirnstein, E. J., et al., 2016. Interplanetary Magnetic Field Sector from Solar Wind around Pluto (SWAP) Measurements of Heavy Ion Pickup near Pluto. The Astrophysical Journal Letters 823.
https://doi.org/10.3847/2041-8205/823/2/L30
1-Mission Science (Pluto-System)
2016
Elliott, H. A., McComas, D. J., Valek, P., Nicolaou, G., Weidner, S., Livadiotis, G., 2016. The New Horizons Solar Wind Around Pluto (SWAP) Observations of the Solar Wind from 11-33 au. The Astrophysical Journal Supplement Series 223.
https://doi.org/10.3847/0067-0049/223/2/19
1-Mission Science (Pluto-System)
2016
Bertrand, T., Forget, F., 2016. Observed glacier and volatile distribution on Pluto from atmosphere-topography processes. Nature 540, 86-89.
https://doi.org/10.1038/nature19337
1-Mission Science (Pluto-System)
2017
Bertrand, T., Forget, F., 2017. 3D modeling of organic haze in Pluto's atmosphere. Icarus 287, 72-86.
https://doi.org/10.1016/j.icarus.2017.01.016
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2017
Desch, S. J., Neveu, M., 2017. Differentiation and cryovolcanism on Charon: A view before and after New Horizons. Icarus 287, 175-186.
https://doi.org/10.1016/j.icarus.2016.11.037
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2016
Hammond, N. P., Barr, A. C., Parmentier, E. M., 2016. Recent tectonic activity on Pluto driven by phase changes in the ice shell. Geophysical Research Letters 43, 6775-6782.
https://doi.org/10.1002/2016GL069220
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2017
Hoey, W. A., Yeoh, S. K., Trafton, L. M., Goldstein, D. B., Varghese, P. L., 2017. Rarefied gas dynamic simulation of transfer and escape in the Pluto-Charon system. Icarus 287, 87-102.
https://doi.org/10.1016/j.icarus.2016.12.010
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2016
Johnson, B. C., Bowling, T. J., Trowbridge, A. J., Freed, A. M., 2016. Formation of the Sputnik Planum basin and the thickness of Pluto's subsurface ocean. Geophysical Research Letters 43, 10.
https://doi.org/10.1002/2016GL070694
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2016
Keane, J. T., Matsuyama, I., Kamata, S., Steckloff, J. K., 2016. Reorientation and faulting of Pluto due to volatile loading within Sputnik Planitia. Nature 540, 90-93.
https://doi.org/10.1038/nature20120
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2016
Mandt, K. E., Mousis, O., Luspay-Kuti, A., 2016. Isotopic constraints on the source of Pluto's nitrogen and the history of atmospheric escape. Planetary and Space Science 130, 104-109.
https://doi.org/10.1016/j.pss.2016.02.011
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2017
Moores, J. E., Smith, C. L., Toigo, A. D., Guzewich, S. D., 2017. Penitentes as the origin of the bladed terrain of Tartarus Dorsa on Pluto. Nature 541, 188-190.
https://doi.org/10.1038/nature20779
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2017
Sekine, Y., Genda, H., Kamata, S., Funatsu, T., 2017. The Charon-forming giant impact as a source of Pluto's dark equatorial regions. Nature Astronomy 1.
https://doi.org/10.1038/s41550-016-0031
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2017
Smullen, R. A., Kratter, K. M., 2017. The fate of debris in the Pluto-Charon system. Monthly Notices of the Royal Astronomical Society 466, 4480-4491.
https://doi.org/10.1093/mnras/stw3386
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2016
Trilling, D. E., 2016. The Surface Age of Sputnik Planum, Pluto, Must Be Less than 10 Million Years. PLoS ONE 11, e0147386.
https://doi.org/10.1371/journal.pone.0147386
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2016
Trowbridge, A. J., Melosh, H. J., Steckloff, J. K., Freed, A. M., 2016. Vigorous convection as the explanation for Pluto's polygonal terrain. Nature 534, 79-81.
https://doi.org/10.1038/nature18016
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2017
Zemcov, M., Immel, P., Nguyen, C., Cooray, A., Lisse, C. M., Poppe, A. R., 2017. Measurement of the cosmic optical background using the long range reconnaissance imager on New Horizons. Nature Communications 8.
https://doi.org/10.1038/ncomms15003
1-Mission Science (Pluto-System)
2016
Bagenal, F., et al., 2016. NASA's New Horizons mission to Pluto. COSPAR Space Research Today 195, 9-20.
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2017
Calandra, M. F., Gil-Hutton, R., 2017. Cratering rate on Pluto produced by the inner trans-Neptunian population. Astronomy and Astrophysics 601, id.A116.
https://doi.org/10.1051/0004-6361/201628930
7-Spacecraft, Mission Design, Mission Operations
2005
By Stern et al., ALICE: The Ultraviolet Imaging Spectrograph Aboard the New Horizons Pluto Mission Spacecraft, Society of Photo-Optical Instrumentation Engineers,Proceedings of SPIE, Volume 5906, 2005.
8-Additional Articles of Special Interest to New Horizons
1980
Christy, James W. and Robert S. Harrington, Discovery and Orbit of Charon, Icarus, vol. 44, Oct. 1980, pp. 38-40.
http://dx.doi.org/10.1016/0019-1035%2880%2990051-2
8-Additional Articles of Special Interest to New Horizons
1930
IAUC 288:PLANET PLUTO; 1930d, International Astronomical Union Circular, no. 00288, 1930.
http://www.cbat.eps.harvard.edu/iauc/00200/00288.html
8-Additional Articles of Special Interest to New Horizons
1930
IAUC 289:PLANET PLUTO; 1930c, International Astronomical Union Circular, no. 00289, 1930.
http://www.cbat.eps.harvard.edu/iauc/00200/00289.html
7-Spacecraft, Mission Design, Mission Operations
2005
Kusnierkiewicz, David Y. et al., A Description of the Pluto-Bound New Horizons Spacecraft, Acta Astronautica: Infinite Possibilities Global Realities, Selected Proceedings of the 55th International Astronautical Federation Congress, Vancouver, Oct. 4-8, 2004, vol. 57, no. 2-8, July/October 2005, pp. 135-144.
http://dx.doi.org/10.1016/j.actaastro.2005.03.030
8-Additional Articles of Special Interest to New Horizons
1980
IAUC 3515: 1978 P 1; Occns BY NEPTUNE; Occn BY URANUS; 1980g, International Astronomical Union Circular, no. 03515, 1980.
http://www.cbat.eps.harvard.edu/iauc/03500/03515.html
8-Additional Articles of Special Interest to New Horizons
2002
Stern, Alan, Journey to the Farthest Planet, Scientific American, vol. 286, no. 5, May 2002, p. 56.
http://www.scientificamerican.com/article/journey-to-the-farthest-p/
2-Mission Science (Pre-Pluto Encounter)
2002
McKinnon, William B., Planetary Science: Out on the Edge, Nature, vol. 418, no. 6894, July 11, 2002, pp. 135-137.
http://dx.doi.org/10.1038/418135a
7-Spacecraft, Mission Design, Mission Operations
2005
Slater et al., Radiometric Performance Results of the New Horizons' ALICE UV Imaging Spectrograph, Society of Photo-Optical Instrumentation Engineers,Proceedings of SPIE, Volume 5906, 2005.
7-Spacecraft, Mission Design, Mission Operations
2005
DeBolt et al., A Regenerative Pseudonoise Range Tracking System for the New Horizons Spacecraft, ION-Institute of Navigation 61st Annual Conference, Cambridge, MA, June 2005, pp. 487-497.
7-Spacecraft, Mission Design, Mission Operations
2006
Guo, Yanping, Farquhar, Robert W., Baseline Design of New Horizons Mission to Pluto and the Kuiper Belt, Acta Astronautica, vol. 58, no. 10, May 2006, pp. 550-559.
http://dx.doi.org/10.1016/j.actaastro.2006.01.012
7-Spacecraft, Mission Design, Mission Operations
2005
Morgan et al., Calibration of the New Horizons Long-Range Reconnaissance Imager, Society of Photo-Optical Instrumentation Engineers,Proceedings of SPIE, Volume 5906, 2005.
7-Spacecraft, Mission Design, Mission Operations
2005
Conard et al., Design and Fabrication of the New Horizons Long-Range Reconnaissance Imager, Society of Photo-Optical Instrumentation Engineers,Proceedings of SPIE, Volume 5906, 2005.
7-Spacecraft, Mission Design, Mission Operations
2006
C. B. Haskins et al., Flexible Coherent Digital Transceiver for Low Power Space Missions, 2006 IEEE Aerospace Conference Proceedings, pp. 1-8.
7-Spacecraft, Mission Design, Mission Operations
2006
Troll, John, Schulze, Ron, Measurement Techniques Used to Boresight, Flight Qualify and Align the 2.1-Meter High Gain Antenna for NASA's New Horizons Mission to Pluto, Journal of the CSMC, vol. 1, no. 1, Summer 2006, pp. 6-15.
http://www.qualitydigest.com/pdfs/CMSC1.pdf
7-Spacecraft, Mission Design, Mission Operations
2002
Guo, Yanping, Farquhar, Robert W., New Horizons Mission Design for the Pluto-Kuiper Belt Mission, AIAA/AAS Astrodynamics Specialist Conference, Monterey, CA, August 5-8, 2002, AIAA-2002-4722.
7-Spacecraft, Mission Design, Mission Operations
2004
Bowman et al., New Horizons Mission to Pluto/Charon: Reducing Costs of a Long-Duration Mission, 55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, Vancouver, Canada, Oct. 4-8, 2004
7-Spacecraft, Mission Design, Mission Operations
2004
Miller et al., New Horizons Pluto Approach Navigation, From Advances in the Astronautical Sciences, vol. 119, no. I, Space Flight Mechanics 2004, 2005, pp. 529-540, AAS/AIAA Space Flight Mechanics Meeting, Maui, HI, Feb. 8-12, 2004.
7-Spacecraft, Mission Design, Mission Operations
2005
Guo, Yanping, Farquhar, Robert W., New Horizons Pluto-Kuiper Belt Mission: Design and Simulation of the Pluto-Charon Encounter, Acta Astronautica, vol. 56, no. 3, February 2005, pp. 421-429.
http://dx.doi.org/10.1016/j.actaastro.2004.05.076
7-Spacecraft, Mission Design, Mission Operations
2006
Ottman, Geffrey K., Hersman, Christopher B., The Pluto-New Horizons RTG and Power System Early Mission Performance, 4th International Energy Conversion Engineering Conference and Exhibit (IECEC), San Diego, CA, June 26-29, 2006, AIAA 2006-4029.
7-Spacecraft, Mission Design, Mission Operations
2004
DeBoy et al., The RF Telecommunications System for the New Horizons Mission to Pluto, 2004 IEEE Aerospace Conference Proceedings, vol. 3, pp. 1463-1476.
7-Spacecraft, Mission Design, Mission Operations
2004
Haskins C. B., Millard, W. P., X-band Digital Receiver for the New Horizons Spacecraft, 2004 IEEE Aerospace Conference Proceedings, vol. 3, pp. 1488+.
2-Mission Science (Pre-Pluto Encounter)
2015
Nimmo F. and Spencer J.R., 2015. Powering Triton's recent geological activity by obliquity tides: Implications for Pluto geology. Icarus, 246, 2-10.
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Rhoden, A. R., Henning, W., Hurford, T. A., & Hamilton, D. P. (2015). The interior and orbital evolut
https://doi.org/ion
of Charon as preserved in its geologic record. Icarus, 246, 11-20.
https://doi.org/10.1016/j.icarus.2014.04.030
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Malamud U., Prialnik D. Modeling Kuiper belt objects Charon, Orcus and Salacia by means of a new equation of state for porous icy bodies, Icarus, 246, pp. 21-36, 2015.
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Desch, S. J., 2015. Density of Charon formed from a disk generated by the impact of partially differentiated bodies. Icarus 246, 37-47.
https://doi.org/10.1016/j.icarus.2014.07.034
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Neveu, M., Desch, S. J., Shock, E. L., Glein, C. R., 2015. Prerequisites for explosive cryovolcanism on dwarf planet-class Kuiper belt objects. Icarus 246, 48-64.
https://doi.org/10.1016/j.icarus.2014.03.043
2-Mission Science (Pre-Pluto Encounter)
2015
Moore, J. M., et al., 2015. Geology before Pluto: Pre-encounter considerations. Icarus 246, 65-81.
https://doi.org/10.1016/j.icarus.2014.04.028
2-Mission Science (Pre-Pluto Encounter)
2015
Cruikshank, D. P., et al., 2015. The surface compositions of Pluto and Charon. Icarus 246, 82-92.
https://doi.org/10.1016/j.icarus.2014.05.023
2-Mission Science (Pre-Pluto Encounter)
2015
A meta-analysis of coordinate systems and bibliography of their use on Pluto from Charon's discovery to the present day. Zangari (2015, Icarus, 246, 93)
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Barr, A. C., Collins, G. C., 2015. Tectonic activity on Pluto after the Charon-forming impact. Icarus 246, 146-155.
http://dx.doi.org/10.1016/j.icarus.2014.03.042
2-Mission Science (Pre-Pluto Encounter)
2015
Bray, V. J., Schenk, P. M., 2015. Pristine impact crater morphology on Pluto - Expectations for New Horizons. Icarus 246, 156-164.
https://doi.org/10.1016/j.icarus.2014.05.005
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Bierhaus, E. B., Dones, L., 2015. Craters and ejecta on Pluto and Charon: Anticipated results from the New Horizons flyby. Icarus 246, 165-182.
https://doi.org/10.1016/j.icarus.2014.05.044
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Hansen, C. J., Paige, D. A., Young, L. A., 2015. Pluto's climate modeled with new observational constraints. Icarus 246, 183-191.
https://doi.org/10.1016/j.icarus.2014.03.014
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Wong, M. L., Yung, Y. L., Randall Gladstone, G., 2015. Pluto's implications for a Snowball Titan. Icarus 246, 192-196.
https://doi.org/10.1016/j.icarus.2014.05.019
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Trafton, L. M., 2015. On the state of methane and nitrogen ice on Pluto and Triton: Implications of the binary phase diagram. Icarus 246, 197-205.
https://doi.org/10.1016/j.icarus.2014.05.022
2-Mission Science (Pre-Pluto Encounter)
2015
Schindhelm, E., Stern, S. A., Gladstone, R., Zangari, A., 2015. Pluto and Charon's UV spectra from IUE to New Horizons. Icarus 246, 206-212.
https://doi.org/10.1016/j.icarus.2014.03.003
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Spectral variability of Charon's 2.21- ?m feature. DeMeo et al. (2015, Icarus, 246, 213)
2-Mission Science (Pre-Pluto Encounter)
2015
Olkin, C. B., et al., 2015. Evidence that Pluto's atmosphere does not collapse from occultations including the 2013 May 04 event. Icarus 246, 220-225.
https://doi.org/10.1016/j.icarus.2014.03.026
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Observations of a successive stellar occultation by Charon and graze by Pluto in 2011: Multiwavelength SpeX and MORIS data from the IRTF. Gulbis et al. (2015, Icarus, 246, 226)
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
French, R. G., et al., 2015. Seasonal variations in Pluto's atmospheric tides. Icarus 246, 247-267.
https://doi.org/10.1016/j.icarus.2014.05.017
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Exploring the spatial, temporal, and vertical distribution of methane in Pluto's atmosphere. Lellouch et al. (2015, Icarus, 246, 268)
2-Mission Science (Pre-Pluto Encounter)
2015
Randall Gladstone, G., Pryor, W. R., Alan Stern, S., 2015. Ly? @Pluto. Icarus 246, 279-284.
https://doi.org/10.1016/j.icarus.2014.04.016
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Production of N2 Vegard-Kaplan and Lyman-Birge-Hopfield emissions on Pluto. Jain and Bhardwaj (2015, Icarus, 246, 285)
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Tucker, O. J., Johnson, R. E., Young, L. A., 2015. Gas transfer in the Pluto-Charon system: A Charon atmosphere. Icarus 246, 291-297.
https://doi.org/10.1016/j.icarus.2014.05.002
2-Mission Science (Pre-Pluto Encounter)
2015
Stern, S. A., Gladstone, R., Zangari, A., Fleming, T., Goldstein, D., 2015. Transient atmospheres on Charon and water-ice covered KBOs resulting from comet impacts. Icarus 246, 298-302.
https://doi.org/10.1016/j.icarus.2014.03.008
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Pluto's solar wind interaction: Collisional effects. Cravens and Strobel (2015, Icarus, 246, 303)
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Perez-de-Tejada, H., Durand-Manterola, H., Reyes-Ruiz, M., Lundin, R., 2015. Pluto's plasma wake oriented away from the ecliptic plane. Icarus 246, 310-316.
https://doi.org/10.1016/j.icarus.2014.06.022
2-Mission Science (Pre-Pluto Encounter)
2015
Brozovic, M., Showalter, M. R., Jacobson, R. A., Buie, M. W., 2015. The orbits and masses of satellites of Pluto. Icarus 246, 317-329.
https://doi.org/10.1016/j.icarus.2014.03.015
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Pires, P., Giuliatti Winter, S. M., Gomes, R. S., 2015. The evolution of a Pluto-like system during the migration of the ice giants. Icarus 246, 330-338.
https://doi.org/10.1016/j.icarus.2014.04.029
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Giuliatti Winter, S. M., Winter, O. C., Vieira Neto, E., Sfair, R., 2015. The sailboat island and the New Horizons trajectory. Icarus 246, 339-344.
https://doi.org/10.1016/j.icarus.2014.04.003
2-Mission Science (Pre-Pluto Encounter)
2015
Throop, H. B., French, R. G., Shoemaker, K., Olkin, C. B., Ruhland, T. R., Young, L. A., 2015. Limits on Pluto's ring system from the June 12 2006 stellar occultation and implications for the New Horizons impact hazard. Icarus 246, 345-351.
https://doi.org/10.1016/j.icarus.2014.05.020
2-Mission Science (Pre-Pluto Encounter)
2015
Poppe, A. R., 2015. Interplanetary dust influx to the Pluto-Charon system. Icarus 246, 352-359.
https://doi.org/10.1016/j.icarus.2013.12.029
2-Mission Science (Pre-Pluto Encounter)
2015
Porter, S. B., Grundy, W. M., 2015. Ejecta transfer in the Pluto system. Icarus 246, 360-368.
https://doi.org/10.1016/j.icarus.2014.03.031
2-Mission Science (Pre-Pluto Encounter)
2015
Benecchi, S. D., et al., 2015. New Horizons: Long-range Kuiper belt targets observed by the Hubble Space Telescope. Icarus 246, 369-374.
https://doi.org/10.1016/j.icarus.2014.04.014
1-Mission Science (Pluto-System)
2017
Binzel, R. P., 2017. Undaunted exploration. Nature Astronomy Mission Control Vol 1.
https://doi.org/10.1038/s41550-017-0175
1-Mission Science (Pluto-System)
2018
Hinson, D. P., et al., 2018. An upper limit on Pluto's ionosphere from radio occultation measurements with New Horizons. Icarus 307, 17-24.
https://doi.org/https://doi.org/10.1016/j.icarus.2018.02.011
1-Mission Science (Pluto-System)
2018
Hofgartner, J. D., et al., 2018. A search for temporal changes on Pluto and Charon. Icarus 302, 273-284.
https://doi.org/10.1016/j.icarus.2017.10.044
1-Mission Science (Pluto-System)
2018
Grundy, W. M., et al., 2018. Pluto's haze as a surface material. Icarus 314, 232-245.
https://doi.org/10.1016/j.icarus.2018.05.019
1-Mission Science (Pluto-System)
2018
Lauer, T. R., et al., 2018. The New Horizons and Hubble Space Telescope search for rings, dust, and debris in the Pluto-Charon system. Icarus 301, 155-172.
https://doi.org/10.1016/j.icarus.2017.09.033
1-Mission Science (Pluto-System)
2017
Linscott, I. R., 2017. Radio Brightness Temperature Measurements of Pluto at 4.2 cm with New Horizons. Submitted.
1-Mission Science (Pluto-System)
2017
Kammer, J. A., et al., 2017. New Horizons Upper Limits on O2 in Pluto's Present Day Atmosphere. The Astronomical Journal 154.
https://doi.org/10.3847/1538-3881/aa78a7
1-Mission Science (Pluto-System)
2018
Moore, J. M., et al., 2018. Bladed Terrain on Pluto: Possible Origins and Evolution. Icarus 300, 129-144.
https://doi.org/10.1016/j.icarus.2017.08.031
1-Mission Science (Pluto-System)
2016
Schenk, P. M., Nimmo, F., 2016. New Horizons at Pluto. Nature Geosciences Commentary 9, 411-412.
3-Mission Science (Jupiter Encounter)
2014
Io's hot spots in the near-infrared detected by LEISA during the New Horizons flyby. Tsang et al. (2014, Journal of Geophysical Research (Planets), 119, 2222)
3-Mission Science (Jupiter Encounter)
2014
Plasma and energetic particle observations in Jupiter's deep tail near the magnetopause. Kollmann et al. (2014, Journal of Geophysical Research (Space Physics), 119, 6432)
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2014
Io's active volcanoes during the New Horizons era: Insights from New Horizons imaging. Rathbun et al. (2014, Icarus, 231, 261)
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2013
Perspectives on effectively constraining the location of a massive trans-Plutonian object with the New Horizons spacecraft: a sensitivity analysis. Iorio (2013, Celestial Mechanics and Dynamical Astronomy, 116, 357)
3-Mission Science (Jupiter Encounter)
2012
MeV electrons detected by the Alice UV spectrograph during the New Horizons flyby of Jupiter. Steffl et al. (2012, Journal of Geophysical Research (Space Physics), 117, A10222)
7-Spacecraft, Mission Design, Mission Operations
2010
Ebert, R. W., McComas, D. J., Rodriguez, B., Valek, P., Weidner, S., 2010. A Composition Analysis Tool for the Solar Wind Around Pluto (SWAP) Instrument on New Horizons. Space Science Reviews 156, 1-12.
3-Mission Science (Jupiter Encounter)
2010
New Horizons Alice ultraviolet observations of a stellar occultation by Jupiter's atmosphere. Greathouse et al. (2010, Icarus, 208, 293)
2-Mission Science (Pre-Pluto Encounter)
2010
Poppe, A., James, D., Jacobsmeyer, B., & Horányi, M. (2010). First results from the Venetia Burney Student Dust Counter on the New Horizons mission. Geophysical Research Letters, 37(11), n/a–n/a.
https://doi.org/10.1029/2003JE002086
3-Mission Science (Jupiter Encounter)
2009
Hill, M. E., et al., 2020. Influence of Solar Disturbances on Galactic Cosmic Rays in the Solar Wind, Heliosheath, and Local Interstellar Medium: Advanced Composition Explorer, New Horizons, and Voyager Observations. The Astrophysical Journal 905, 69.
https://doi.org/10.3847/1538-4357/abb408
3-Mission Science (Jupiter Encounter)
2009
Haggerty, D. K., Hill, M. E., McNutt, R. L., & Paranicas, C. (2009). Composition of energetic particles in the Jovian magnetotail. Journal of Geophysical Research, 114(A), 2208.
https://doi.org/10.1029/2008JA013659
3-Mission Science (Jupiter Encounter)
2007
Io Volcanism Seen by New Horizons: A Major Eruption of the Tvashtar Volcano. Spencer et al. (2007, Science, 318, 240)
3-Mission Science (Jupiter Encounter)
2007
Io's Atmospheric Response to Eclipse: UV Aurorae Observations. Retherford et al. (2007, Science, 318, 237)
3-Mission Science (Jupiter Encounter)
2007
New Horizons Mapping of Europa and Ganymede. Grundy et al. (2007, Science, 318, 234)
3-Mission Science (Jupiter Encounter)
2007
Clump Detections and Limits on Moons in Jupiter's Ring System. Showalter et al. (2007, Science, 318, 232)
3-Mission Science (Jupiter Encounter)
2007
Jupiter's Nightside Airglow and Aurora. Gladstone et al. (2007, Science, 318, 229)
3-Mission Science (Jupiter Encounter)
2007
Polar Lightning and Decadal-Scale Cloud Variability on Jupiter. Baines et al. (2007, Science, 318, 226)
3-Mission Science (Jupiter Encounter)
2007
Jupiter Cloud Composition, Stratification, Convection, and Wave Motion: A View from New Horizons. Reuter et al. (2007, Science, 318, 223)
3-Mission Science (Jupiter Encounter)
2007
McNutt, R. L., Haggerty, D. K., Hill, M. E., Krimigis, S. M., Livi, S., Ho, G. C., et al. (2007). Energetic Particles in the Jovian Magnetotail. Science, 318(5), 220.
https://doi.org/10.1126/science.1148025
3-Mission Science (Jupiter Encounter)
2007
McComas, D. J., Allegrini, F., Bagenal, F., Crary, F., Ebert, R. W., Elliott, H., et al. (2007). Diverse Plasma Populations and Structures in Jupiter’s Magnetotail. Science, 318(5), 217.
https://doi.org/10.1126/science.1147393
3-Mission Science (Jupiter Encounter)
2007
New Surprises in the Largest Magnetosphere of Our Solar System. Krupp (2007, Science, 318, 216)
3-Mission Science (Jupiter Encounter)
2007
New Horizons encounters Jupiter. Carroll (2007, Astronomy Now, 21, 22)
1-Mission Science (Pluto-System)
2017
Stern, S. A., et al., 2017. Evidence for Possible Clouds in Pluto's Present-day Atmosphere. The Astronomical Journal 154.
https://doi.org/10.3847/1538-3881/aa78ec
2-Mission Science (Pre-Pluto Encounter)
2003
Finding KBO Flyby Targets for New Horizons. Spencer et al. (2003, Earth Moon and Planets, 92, 483)
2-Mission Science (Pre-Pluto Encounter)
2003
New Horizons: The First Reconnaissance Mission to Bodies in the Kuiper Belt. Stern and Spencer (2003, Earth Moon and Planets, 92, 477)
1-Mission Science (Pluto-System)
2019
Singer, K. N., et al., 2019. Impact Craters on Pluto and Charon Indicate a Deficit of Small Kuiper Belt Objects. Science 363.
https://doi.org/10.1126/science.aap8628
1-Mission Science (Pluto-System)
2018
Schenk, P. M. et al., Breaking up is hard to do: Global cartography and topography of Pluto's mid-sized icy moon Charon from New Horizons. Icarus 315, 124-145 (2018).
https://doi.org/10.1016/j.icarus.2018.06.010
7-Spacecraft, Mission Design, Mission Operations
1
2-Mission Science (Pre-Pluto Encounter)
1
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
1
8-Additional Articles of Special Interest to New Horizons
1
1-Mission Science (Pluto-System)
1
3-Mission Science (Jupiter Encounter)
1
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2017
Quillen, A. C., Nichols-Fleming, F., Chen, Y.-Y., Noyelles, B., 2017. Obliquity evolution of the minor satellites of Pluto and Charon. Icarus 293, 94-113.
https://doi.org/10.1016/j.icarus.2017.04.012
2-Mission Science (Pre-Pluto Encounter)
2015
Bagenal, F., et al., 2015. Solar wind at 33 AU: Setting bounds on the Pluto interaction for New Horizons. Journal of Geophysical Research (Planets) 120, 1497-1511.
https://doi.org/10.1002/2015JE004880
3-Mission Science (Jupiter Encounter)
2017
McComas, D. J., et al., 2017. Jovian deep magnetotail composition and structure. Journal of Geophysical Research (Space Physics) 122, 1763-1777.
https://doi.org/10.1002/2016JA023039
3-Mission Science (Jupiter Encounter)
2014
Nicolaou, G., McComas, D. J., Bagenal, F., Elliott, H. A., 2014. Properties of plasma ions in the distant Jovian magnetosheath using Solar Wind Around Pluto data on New Horizons. Journal of Geophysical Research (Space Physics) 119, 3463-3479.
https://doi.org/10.1002/2013JA019665
3-Mission Science (Jupiter Encounter)
2015
Nicolaou, G., McComas, D. J., Bagenal, F., Elliott, H. A., Ebert, R. W., 2015. Jupiter's deep magnetotail boundary layer. Planetary and Space Science 111, 116-125.
https://doi.org/10.1016/j.pss.2015.03.020
3-Mission Science (Jupiter Encounter)
2015
Nicolaou, G., McComas, D. J., Bagenal, F., Elliott, H. A., Wilson, R. J., 2015. Plasma properties in the deep jovian magnetotail. Planetary and Space Science 119, 222-232.
https://doi.org/10.1016/j.pss.2015.10.001
1-Mission Science (Pluto-System)
2017
Strobel, D. F., Zhu, X., 2017. Comparative planetary nitrogen atmospheres: Density and thermal structures of Pluto and Triton. Icarus 291, 55-64.
https://doi.org/10.1016/j.icarus.2017.03.013
8-Additional Articles of Special Interest to New Horizons
2011
Archinal, B. A., et al., 2011. Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009. Celestial Mechanics and Dynamical Astronomy 109, 101-135.
8-Additional Articles of Special Interest to New Horizons
2009
Archinal, B. A., et al., 2011. Erratum to: Reports of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2006 & 2009. Celestial Mechanics and Dynamical Astronomy 110, 401-403.
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Bosh, A. S., et al., 2015. The state of Pluto's atmosphere in 2012-2013. Icarus 246, 237-246.
https://doi.org/10.1016/j.icarus.2014.03.048
2-Mission Science (Pre-Pluto Encounter)
2010
Buie, M. W., Grundy, W. M., Young, E. F., Young, L. A., Stern, S. A., 2010. Pluto and Charon with the Hubble Space Telescope. II. Resolving Changes on Pluto's Surface and a Map for Charon. Astron. J. (N. Y.) 139, 1128-1143.
https://doi.org/10.1088/0004-6256/139/3/1128
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Cravens, T. E., Strobel, D. F., 2015. Pluto's solar wind interaction: Collisional effects. Icarus 246, 303-309.
https://doi.org/10.1016/j.icarus.2014.04.011
2-Mission Science (Pre-Pluto Encounter)
2015
Earle, A. M., Binzel, R. P., 2015. Pluto's insolation history: Latitudinal variations and effects on atmospheric pressure. Icarus 250, 405-412.
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2015
Greenstreet, S., Gladman, B., McKinnon, W. B., 2015. Impact and cratering rates onto Pluto. Icarus 258, 267-288.
https://doi.org/10.1016/j.icarus.2015.05.026
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2017
Lellouch, E., et al., 2017. Detection of CO and HCN in Pluto's atmosphere with ALMA. Icarus 286, 289-307.
https://doi.org/10.1016/j.icarus.2016.10.013
2-Mission Science (Pre-Pluto Encounter)
2015
McKinnon, W. B., 2015. Introduction to 'Pluto, Charon, and the Kuiper belt objects': Pluto on the eve of the New Horizons encounter. In: Spohn, T., Schubert, G., (Eds.), Treatise on Geophysics. Elsevier.
2-Mission Science (Pre-Pluto Encounter)
2011
Showalter, M. R., Hamilton, D. P., Stern, S. A., Weaver, H. A., Steffl, A. J., Young, L. A., 2011. New Satellite of (134340) Pluto: S/2011 (134340) 1. International Astronomical Union Circular 9221, 1.
2-Mission Science (Pre-Pluto Encounter)
2012
Showalter, M. R., et al., 2012. New Satellite of (134340) Pluto: S/2012 (134340) 1. International Astronomical Union Circular 9253, 1.
2-Mission Science (Pre-Pluto Encounter)
2015
Singer, K. N., Stern, S. A., 2015. On the Provenance of Pluto's Nitrogen (N2). ApJ Letters 808, L50.
https://doi.org/10.1088/2041-8205/808/2/L50
2-Mission Science (Pre-Pluto Encounter)
2003
Stern, A., Spencer, J., 2003. New Horizons: The first reconnaissance mission to bodies in the Kuiper belt. Earth, Moon, Planets 92, 477-482.
https://doi.org/10.1023/B:MOON.0000031962.33024.33
2-Mission Science (Pre-Pluto Encounter)
2015
Stern, S. A., Porter, S., Zangari, A., 2015. On the roles of escape erosion and the viscous relaxation of craters on Pluto. Icarus 250, 287-293.
https://doi.org/10.1016/j.icarus.2014.12.006
2-Mission Science (Pre-Pluto Encounter)
2006
Weaver, H. A., et al., 2006. Discovery of two new satellites of Pluto. Nature 439, 943-945.
2-Mission Science (Pre-Pluto Encounter)
2013
Young, L. A., 2013. Pluto's Seasons: New Predictions for New Horizons. ApJ Letters 766, L22.
https://doi.org/10.1088/2041-8205/766/2/L22
7-Spacecraft, Mission Design, Mission Operations
2015
Hamilton, S., Hart, H. M., Bowman, A., Rogers, G., 2015. New Horizons Hibernation Operations: It Takes a Lot of Work to Sleep. IEEE, Aerospace Conference.
7-Spacecraft, Mission Design, Mission Operations
2016
Hamilton, S., Hart, H. M., Whittenburg, K., 2016. A Mission Planner's Perspective: Planning, Development, and Verification of the New Horizons Pluto Flyby Command Sequences. AIAA, SpaceOps 2016.
1-Mission Science (Pluto-System)
2018
Earle, A. M., et al., 2018. Albedo matters: Understanding runaway albedo variations on Pluto. Icarus 303, 1-9.
https://doi.org/10.1016/j.icarus.2017.12.015
2-Mission Science (Pre-Pluto Encounter)
2015
McKinnon, W. B., 2015. Exploring the dwarf planets. Nature Physics 11, 608-611.
https://doi.org/10.1038/nphys3394
1-Mission Science (Pluto-System)
2018
Bierson, C. J., Nimmo, F., McKinnon, W. B., 2018. Implications of the observed Pluto–Charon density contrast. Icarus 309, 207-219.
https://doi.org/10.1016/j.icarus.2018.03.007
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2017
Forget, F., Bertrand, T., Vangvichith, M., Leconte, J., Millour, E., Lellouch, E., 2017. A post-New Horizons global climate model of Pluto including the N2, CH4 and CO cycles. Icarus 287, 54-71.
https://doi.org/10.1016/j.icarus.2016.11.038
1-Mission Science (Pluto-System)
2017
Wong, M. L., et al., 2017. The photochemistry of Pluto's atmosphere as illuminated by New Horizons. Icarus 287, 110-115.
https://doi.org/10.1016/j.icarus.2016.09.028
1-Mission Science (Pluto-System)
2018
Schenk, P. M., et al., 2018. Basins, fractures and volcanoes: Global cartography and topography of Pluto from New Horizons. Icarus 314, 400-433.
https://doi.org/10.1016/j.icarus.2018.06.008
1-Mission Science (Pluto-System)
2017
Olkin, C. B., et al., 2017. The Global Color of Pluto from New Horizons. The Astronomical Journal 154.
https://doi.org/10.3847/1538-3881/aa965b
1-Mission Science (Pluto-System)
2018
Cook, J. C., et al., 2018. Composition of Pluto's small satellites: Analysis of New Horizons spectral images. Icarus 315, 30-45.
https://doi.org/10.1016/j.icarus.2018.05.024
1-Mission Science (Pluto-System)
2017
Steffl, A. J., 2017. Pluto's Ultraviolet Spectrum, Detection of Airglow Emissions, and Surface Reflectance. The Astronomical Journal Pending submission.
1-Mission Science (Pluto-System)
2018
Verbiscer, A. J., et al., 2018. Phase Curves of Nix and Hydra from the New Horizons Imaging Cameras. The Astrophysical Journal 852.
https://doi.org/10.3847/2041-8213/aaa486
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2018
Kwiecinski, J. A., Kovacs, A., Krause, A. L., Planella, F. B., van Gorder, R. A., 2018. Chaotic Dynamics in the Planar Gravitational Many-Body Problem with Rigid Body Rotations. International Journal of Bifurcation and Chaos 28.
https://doi.org/10.1142/S0218127418300136
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2018
Pavithraa, S., et al., 2018. Vacuum ultraviolet photoabsorption of prime ice analogues of Pluto and Charon. Spectrochimica Acta Part A: Molecular Spectroscopy 190, 172-176.
https://doi.org/10.1016/j.saa.2017.08.060
1-Mission Science (Pluto-System)
2018
Benecchi, S. D., et al., 2018. K2 precision lightcurve: Twelve days in the Pluto-Charon system. Icarus 314, 265-273.
https://doi.org/10.1016/j.icarus.2018.05.015
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2018
de Barros, A. L. F., Andrade, D. P. P., da Silveira, E. F., Alcantara, K. F., Boduch, P., Rothard, H., 2018. Chemical reactions in the nitrogen-acetone ice induced by cosmic ray analogues: relevance for the Solar system. Monthly Notices of the Royal Astronomical Society 474, 1469-1481.
https://doi.org/10.1093/mnras/stx2751
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2017
Feyerabend, M., Liuzzo, L., Simon, S., Motschmann, U., 2017. A Three-Dimensional Model of Pluto's Interaction With the Solar Wind During the New Horizons Encounter. Journal of Geophysical Research (Space Physics) 122, 10.
https://doi.org/10.1002/2017JA024456
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2018
Krasnopolsky, V. A., 2018. Some problems in interpretation of the New Horizons observations of Pluto's atmosphere. Icarus 301, 152-154.
https://doi.org/10.1016/j.icarus.2017.08.021
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2018
Plane, J. M. C., et al., 2018. Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces. Space Science Reviews 214.
https://doi.org/10.1007/s11214-017-0458-1
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2018
Saxena, P., Renaud, J. P., Henning, W. G., Jutzi, M., Hurford, T., 2018. Relevance of tidal heating on large TNOs. Icarus 302, 245-260.
https://doi.org/10.1016/j.icarus.2017.11.023
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2018
Tan, S. P., Kargel, J. S., 2018. Solid-phase equilibria on Pluto's surface. Monthly Notices of the Royal Astronomical Society 474, 4254-4263.
https://doi.org/10.1093/mnras/stx3036
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2017
Vasconcelos, F. d. A., Pilling, S., Rocha, W. R. M., Rothard, H., Boduch, P., 2017. Energetic Processing of N2:CH4 Ices Employing X-Rays and Swift Ions: Implications for Icy Bodies in the Outer Solar System. The Astrophysical Journal 850.
https://doi.org/10.3847/1538-4357/aa965f
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2017
West, R. A., 2017. Planetary science: Haze cools Pluto's atmosphere. Nature 551, 302-303.
https://doi.org/10.1038/551302a
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2017
Zhang, X., Strobel, D. F., Imanaka, H., 2017. Haze heats Pluto's atmosphere yet explains its cold temperature. Nature 551, 352-355.
https://doi.org/10.1038/nature24465
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2017
Pasachoff, J. M., et al., 2017. Pluto occultation on 2015 June 29 UTC with central flash and atmospheric spikes just before the New Horizons flyby. Icarus 296, 305-314.
https://doi.org/10.1016/j.icarus.2017.05.012
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2017
Mandt, K., et al., 2017. Photochemistry on Pluto: part II HCN and nitrogen isotope fractionation. Monthly Notices of the Royal Astronomical Society 472, 118-128.
https://doi.org/10.1093/mnras/stx1587
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2017
Luspay-Kuti, A., et al., 2017. Photochemistry on Pluto - I. Hydrocarbons and aerosols. Monthly Notices of the Royal Astronomical Society 472, 104-117.
https://doi.org/10.1093/mnras/stx1362
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2017
Witasse, O., et al., 2017. Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en route to Pluto: Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU. Journal of Geophysical Research (Space Physics) 122, 7865-7890.
https://doi.org/10.1002/2017JA023884
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2018
Buhler, P. B., Ingersoll, A. P., 2018. Sublimation pit distribution indicates convection cell surface velocities of ~10 cm per year in Sputnik Planitia, Pluto. Icarus 300, 327-340.
https://doi.org/https://doi.org/10.1016/j.icarus.2017.09.018
1-Mission Science (Pluto-System)
2018
Bertrand, T., et al., 2018. The nitrogen cycles on Pluto over seasonal and astronomical timescales. Icarus 309, 277-296.
https://doi.org/10.1016/j.icarus.2018.03.012
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2016
Singer, K. N., 2016. Pluto At Last: New Horizons Reveals Worlds of Surprises. The Planetary Report September 2016, pages 13-18.
http://www.planetary.org/explore/the-planetary-report/tpr-2016-3.html
1-Mission Science (Pluto-System)
2018
Olkin, C. B., Grundy, W., 2018. A Survey of Pluto’s Surface Composition. In: Badescu, V., Zacny, K., (Eds.), Outer Solar System: Prospective Energy and Material Resources. Springer-Verlag, pp. 3-13. 10.1007/978-3-319-73845-1_1
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2018
Qiang, W., Yongyun, H., Yonggang, L., Douglas, N. C. L., Jun, Y., Adam, P. S., 2018. Young Surface of Pluto’s Sputnik Planitia Caused by Viscous Relaxation. The Astrophysical Journal Letters 856, L14.
https://doi.org/10.3847/2041-8213/aab54f
2-Mission Science (Pre-Pluto Encounter)
2006
Stern, S. A., et al., 2006. A giant impact origin for Pluto's small moons and satellite multiplicity in the Kuiper belt. Nature 439, 946-948.
https://doi.org/10.1038/nature04548
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2018
Glein, C. R., Waite, J. H., 2018. Primordial N2 provides a cosmochemical explanation for the existence of Sputnik Planitia, Pluto. Icarus 313, 79-92.
https://doi.org/10.1016/j.icarus.2018.05.007
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2018
Telfer, M. W., et al., 2018. Dunes on Pluto. Science 360, 992-997.
https://doi.org/10.1126/science.aao2975
7-Spacecraft, Mission Design, Mission Operations
2017
Guo, Y., 2017. New Horizons Extended Mission Design to the Kuiper Belt Object 2014 MU69, 27th AAS/AIAA Space Flight Mechanics Meeting.
7-Spacecraft, Mission Design, Mission Operations
2015
Guo, Y., et al., 2015. Trajectory Monitoring and Control of the New Horizons Pluto Flyby, ISSFD.
http://issfd.org/2015/files/downloads/papers/066_Guo.pdf
7-Spacecraft, Mission Design, Mission Operations
2011
Guo, Y., 2011. Halfway Flight Performance of the New Horizons Mission, 9th IAA Low Cost Planetary Missions Conference.
7-Spacecraft, Mission Design, Mission Operations
2008
Guo, Y., 2008. Flight of the New Horizons Spacecraft to Pluto and the Kuiper Belt, IAF, 59th International Astronautical Congress.
1-Mission Science (Pluto-System)
2018
Poppe, A. R., Horányi, M., 2018. Interplanetary dust delivery of water to the atmospheres of Pluto and Triton. Astronomy and Astrophysics 617.
https://doi.org/10.1051/0004-6361/201833980
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2018
Rannou, P., West, R., 2018. Supersaturation on Pluto and elsewhere. Icarus 312, 36-44.
https://doi.org/10.1016/j.icarus.2018.04.025
1-Mission Science (Pluto-System)
2019
Buratti, B. J., et al., 2019. New Horizons Photometry of Pluto's Moon Charon. The Astrophysical Journal 874.
https://doi.org/10.3847/2041-8213/ab0bff
5-Mission Science (Arrokoth/2014 MU69)
2019
Stern, S. A., et al., 2019. Initial results from the New Horizons exploration of 2014 MU69, a small Kuiper Belt object. Science 364.
https://doi.org/10.1126/science.aaw9771
4-Mission Science (Cruise Science, including Distant KBOs)
2019
Verbiscer, A. J., et al., 2019. Phase Curves from the Kuiper Belt: Photometric Properties of Distant Kuiper Belt Objects Observed by New Horizons. The Astronomical Journal 158.
https://doi.org/10.3847/1538-3881/ab3211
1-Mission Science (Pluto-System)
2019
Barnes, N. P., et al., 2019. Constraining the IMF at Pluto Using New Horizons SWAP Data and Hybrid Simulations. Journal of Geophysical Research (Space Physics) 124, 1568-1581.
https://doi.org/10.1029/2018JA026083
1-Mission Science (Pluto-System)
2020
Beddingfield, C. B., et al., 2020. Landslides on Charon. Icarus 335, 113383.
https://doi.org/10.1016/j.icarus.2019.07.017
1-Mission Science (Pluto-System)
2019
Bertrand, T., et al., 2019. The CH4 cycles on Pluto over seasonal and astronomical timescales. Icarus 329, 148-165.
https://doi.org/10.1016/j.icarus.2019.02.007
1-Mission Science (Pluto-System)
2019
Beyer, R. A., et al., 2019. The nature and origin of Charon's smooth plains. Icarus 323, 16-32.
https://doi.org/10.1016/j.icarus.2018.12.036
1-Mission Science (Pluto-System)
2019
Bird, M. K., et al., 2019. Radio thermal emission from Pluto and Charon during the New Horizons encounter. Icarus 322, 192-209.
https://doi.org/10.1016/j.icarus.2019.01.004
1-Mission Science (Pluto-System)
2019
Conrad, J. W., et al., 2019. An upper bound on Pluto's heat flux from a lack of flexural response of its normal faults. Icarus 328, 210-217.
https://doi.org/10.1016/j.icarus.2019.03.028
1-Mission Science (Pluto-System)
2019
Cruikshank, D. P., et al., 2019. Prebiotic Chemistry of Pluto. Astrobiology 19, 831-848.
https://doi.org/10.1089/ast.2018.1927
1-Mission Science (Pluto-System)
2019
Cruikshank, D. P., et al., 2019. Recent cryovolcanism in Virgil Fossae on Pluto. Icarus 330, 155-168.
https://doi.org/10.1016/j.icarus.2019.04.023
1-Mission Science (Pluto-System)
2018
Earle, A. M., et al., 2018. Methane distribution on Pluto as mapped by the New Horizons Ralph/MVIC instrument. Icarus 314, 195-209.
https://doi.org/10.1016/j.icarus.2018.06.005
1-Mission Science (Pluto-System)
2018
Elliott, H. A., et al., 2018. Determining the Alpha to Proton Density Ratio for the New Horizons Solar Wind Observations. The Astrophysical Journal 866.
https://doi.org/10.3847/1538-4357/aadba6
1-Mission Science (Pluto-System)
2018
Gladstone, G. R., et al., 2018. The Lyman-alpha Sky Background as Observed by New Horizons. Geophysical Research Letters 45, 8022-8028.
https://doi.org/10.1029/2018GL078808
5-Mission Science (Arrokoth/2014 MU69)
2019
Kammer, J. A., et al., 2019. Probing the Hill Sphere of (486958) 2014 MU69. II. Hubble Space Telescope Fine Guidance Sensors Observations during the 2018 August 4 Stellar Occultation. The Astronomical Journal 158.
https://doi.org/10.3847/1538-3881/ab3f31
4-Mission Science (Cruise Science, including Distant KBOs)
2019
Kollmann, P., et al., 2019. Suprathermal Ions in the Outer Heliosphere. The Astrophysical Journal 876.
https://doi.org/10.3847/1538-4357/ab125f
4-Mission Science (Cruise Science, including Distant KBOs)
2019
Piquette, M., et al., 2019. Student Dust Counter: Status report at 38 AU. Icarus 321, 116-125.
https://doi.org/10.1016/j.icarus.2018.11.012
4-Mission Science (Cruise Science, including Distant KBOs)
2019
Poppe, A. R., et al., 2019. Constraining the Solar System's Debris Disk with In Situ New Horizons Measurements from the Edgeworth/Kuiper Belt. The Astrophysical Journal 881.
https://doi.org/10.3847/2041-8213/ab322a
7-Spacecraft, Mission Design, Mission Operations
2018
Porter, S. B., et al., 2018. High-precision Orbit Fitting and Uncertainty Analysis of (486958) 2014 MU69. The Astronomical Journal 156.
https://doi.org/10.3847/1538-3881/aac2e1
1-Mission Science (Pluto-System)
2018
Stern, S. A., Grundy, W. M., McKinnon, W. B., Weaver, H. A., Young, L. A., 2018. The Pluto System After New Horizons. Annual Review of Astronomy and Astrophysics 56, 357-392.
https://doi.org/10.1146/annurev-astro-081817-051935
1-Mission Science (Pluto-System)
2019
White, O. L., et al., 2019. Washboard and fluted terrains on Pluto as evidence for ancient glaciation. Nature Astronomy 3, 62-68.
https://doi.org/10.1038/s41550-018-0592-z
1-Mission Science (Pluto-System)
2018
Zirnstein, E. J., et al., 2018. In Situ Observations of Preferential Pickup Ion Heating at an Interplanetary Shock. Physical Review Letters 121.
https://doi.org/10.1103/PhysRevLett.121.075102
7-Spacecraft, Mission Design, Mission Operations
2019
Guo, Y., Schlei, W. R., 2019. New Horizons 2014MU69 Flyby Design and Operation. 29th AAS/AIAA Space Flight Mechanics Meeting.
7-Spacecraft, Mission Design, Mission Operations
2019
Stanbridge, D., et al. 2019. Navigation to a Kuiper Belt Object: Maneuver Planning on the Approach to Ultima Thule. 29th AAS/AIAA Space Flight Mechanics Meeting. AAS.
7-Spacecraft, Mission Design, Mission Operations
2019
Bauman, J., 2019. New Horizons' Orbit Determination Performance Throughout the Extended Mission to Ultima Thule. 29th AAS/AIAA Space Flight Mechanics Meeting.
1-Mission Science (Pluto-System)
2019
Robbins, S. J., et al., 2019. Geologic Landforms and Chronostratigraphic History of Charon as Revealed by a Hemispheric Geologic Map. Journal of Geophysical Research (Planets) 124, 155-174.
https://doi.org/10.1029/2018JE005684
7-Spacecraft, Mission Design, Mission Operations
2018
Stern, S. A., Weaver, H. A., Spencer, J. R., Elliott, H. A., Team, T. N. H., 2018. The New Horizons Kuiper Belt Extended Mission. Space Science Reviews.
https://doi.org/10.1007/s11214-018-0507-4
1-Mission Science (Pluto-System)
2019
Dalle Ore, C. M., et al., 2019. Detection of ammonia on Pluto’s surface in a region of geologically recent tectonism. Science Advances 5, eaav5731.
https://doi.org/10.1126/sciadv.aav5731
1-Mission Science (Pluto-System)
2019
Grundy, W. 2019. The Pluto-Charon System. In Oxford Research Encyclopedia of Planetary Science. Ed. Peter Read et al. ISBN:978-0- 190-64792-6. DOI:10.1093/acrefore/9780190647926.013.35.
5-Mission Science (Arrokoth/2014 MU69)
2018
Moore, J. M., et al., 2018. Great Expectations: Plans and Predictions for New Horizons Encounter With Kuiper Belt Object 2014 MU69 ("Ultima Thule"). Geophysical Research Letters 45, 8111-8120.
https://doi.org/10.1029/2018GL078996
4-Mission Science (Cruise Science, including Distant KBOs)
2019
Elliott, H. A., et al., 2019. Slowing of the Solar Wind in the Outer Heliosphere. The Astrophysical Journal 885.
https://doi.org/10.3847/1538-4357/ab3e49
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2019
Zhao, L. L., Zank, G. P., & Adhikari, L. (2019). Generation Mechanisms for Low-energy Interstellar Pickup Ions. The Astrophysical Journal, 879(1), 32.
https://doi.org/10.3847/1538-4357/ab2381
1-Mission Science (Pluto-System)
2019
Kollmann, P., Hill, M. E., Allen, R. C., McNutt, R. L., Brown, L. E., Barnes, N. P., et al. (2019). Pluto's Interaction With Energetic Heliospheric Ions. Journal of Geophysical Research: Space Physics, 124(9), 7413–7424.
https://doi.org/10.1029/2019JA026830
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2019
Swaczyna, P., McComas, D. J., & Zirnstein, E. J. (2019). He+ Ions Comoving with the Solar Wind in the Outer Heliosphere. The Astrophysical Journal, 875(1), 36.
https://doi.org/10.3847/1538-4357/ab1081
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2018
Zemcov, M., Arcavi, I., Arendt, R., Bachelet, E., Ram Chary, R., Cooray, A., et al. (2018). Astrophysics with New Horizons: Making the Most of a Generational Opportunity. Publications of the Astronomical Society of the Pacific, 130(9), 115001.
https://doi.org/10.1088/1538-3873/aadb77
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2018
Zank, G. P., Adhikari, L., Zhao, L. L., Mostafavi, P., Zirnstein, E. J., & McComas, D. J. (2018). The Pickup Ion-mediated Solar Wind. The Astrophysical Journal, 869(1), 23.
https://doi.org/10.3847/1538-4357/aaebfe
4-Mission Science (Cruise Science, including Distant KBOs)
2018
Elliott, H. A., Valek, P., McComas, D. J., Delamere, P. A., Bagenal, F., Gladstone, G. R., et al. (2018). Determining the Alpha to Proton Density Ratio for the New Horizons Solar Wind Observations. The Astrophysical Journal, 866(2), 85.
https://doi.org/10.3847/1538-4357/aadba6
4-Mission Science (Cruise Science, including Distant KBOs)
2017
McComas, D. J., Zirnstein, E. J., Bzowski, M., Elliott, H. A., Randol, B., Schwadron, N. A., et al. (2017). Interstellar Pickup Ion Observations to 38 au. The Astrophysical Journal Supplement Series, 233(1), 0–0.
https://doi.org/10.3847/1538-4365/aa91d2
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2016
Kim, T. K., Pogorelov, N. V., Zank, G. P., Elliott, H. A., & McComas, D. J. (2016). Modeling the Solar Wind at the Ulysses, Voyager, and New Horizons Spacecraft. The Astrophysical Journal, 832(1), 72.
https://doi.org/10.3847/0004-637X/832/1/72
4-Mission Science (Cruise Science, including Distant KBOs)
2013
Randol, B. M., McComas, D. J., Schwadron, N. A., 2013. Interstellar Pick-up Ions Observed between 11 and 22 AU by New Horizons. The Astrophysical Journal 768.
https://doi.org/10.1088/0004-637X/768/2/120
4-Mission Science (Cruise Science, including Distant KBOs)
2012
Randol, B. M., Elliott, H. A., Gosling, J. T., McComas, D. J., Schwadron, N. A., 2012. Observations of Isotropic Interstellar Pick-up Ions at 11 and 17 AU from New Horizons. The Astrophysical Journal 755.
https://doi.org/10.1088/0004-637X/755/1/75
4-Mission Science (Cruise Science, including Distant KBOs)
2013
Szalay, J. R., Piquette, M., Horányi, M., 2013. The Student Dust Counter: Status report at 23 AU. Earth, Planets, and Space 65, 1145-1149.
https://doi.org/10.5047/eps.2013.02.005
4-Mission Science (Cruise Science, including Distant KBOs)
2010
McComas, D. J., Elliott, H. A., Schwadron, N. A., 2010. Pickup hydrogen distributions in the solar wind at ?11 AU: Do we understand pickup ions in the outer heliosphere? Journal of Geophysical Research (Space Physics) 115.
https://doi.org/10.1029/2009JA014604
1-Mission Science (Pluto-System)
2020
Protopapa, S., et al., 2020. Disk-resolved Photometric Properties of Pluto and the Coloring Materials across its Surface. The Astronomical Journal 159, 74.
https://doi.org/10.3847/1538-3881/ab5e82
5-Mission Science (Arrokoth/2014 MU69)
2020
Stern, S. A., Spencer, J. R., Verbiscer, A., Elliott, H. E., Porter, S. P., 2020. Initial results from the exploration of the Kuiper belt by New Horizons. The Trans-Neptunian Solar System, pp. 379-394.
https://doi.org/10.1016/B978-0-12-816490-7.00017-5
1-Mission Science (Pluto-System)
2020
Kammer, J. A., et al., 2020. New Horizons Observations of an Ultraviolet Stellar Occultation and Appulse by Pluto’s Atmosphere. The Astronomical Journal 159.
https://doi.org/10.3847/1538-3881/ab5a77
1-Mission Science (Pluto-System)
2020
Spencer, J., Grundy, W. M., Nimmo, F., Young, L. A., 2020. The Pluto system after New Horizons. The Trans-Neptunian Solar System, pp. 271-288.
https://doi.org/10.1016/B978-0-12-816490-7.00012-6
1-Mission Science (Pluto-System)
2020
Grundy, W., 2020. Pluto and Charon as templates for other large Trans-Neptunian objects. The Trans-Neptunian Solar System, pp. 291-305.
https://doi.org/10.1016/B978-0-12-816490-7.00013-8
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2020
Prialnik, D., Barucci, M. A., Young, L., 2020. Book: The Trans-Neptunian Solar System.
1-Mission Science (Pluto-System)
2020
Young, L. A., Braga-Ribas, F., Johnson, R. E., 2020. Volatiles evolution and atmospheres of Trans-Neptunian objects. The Trans-Neptunian Solar System, pp. 127-151.
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2019
Meza, E., et al., 2019. Lower atmosphere and pressure evolution on Pluto from ground-based stellar occultations, 1988-2016. Astronomy and Astrophysics 625.
https://doi.org/10.1051/0004-6361/201834281
5-Mission Science (Arrokoth/2014 MU69)
2019
Benecchi, S. D., et al., 2019. The color and binarity of (486958) 2014 MU69 and other long-range New Horizons Kuiper Belt targets. Icarus 334, 22.
https://doi.org/10.1016/j.icarus.2019.01.025
5-Mission Science (Arrokoth/2014 MU69)
2019
Benecchi, S. D., et al., 2019. The HST lightcurve of (486958) 2014 MU69. Icarus 334, 11.
https://doi.org/10.1016/j.icarus.2019.01.023
7-Spacecraft, Mission Design, Mission Operations
2020
Weaver, H. A., et al., 2020. In-flight Performance and Calibration of the LOng Range Reconnaissance Imager (LORRI) for the New Horizons Mission. Publications of the Astronomical Society of the Pacific 132, 035003.
https://doi.org/10.1088/1538-3873/ab67ec
1-Mission Science (Pluto-System)
2020
Bertrand, T., et al., 2020. Pluto's Beating Heart Regulates the Atmospheric Circulation: Results From High-Resolution and Multiyear Numerical Climate Simulations. Journal of Geophysical Research (Planets) 125, e06120.
https://doi.org/10.1029/2019je006120
5-Mission Science (Arrokoth/2014 MU69)
2020
Buie, M. W., et al., 2020. Size and Shape Constraints of (486958) Arrokoth from Stellar Occultations. The Astronomical Journal 159, 130.
https://doi.org/10.3847/1538-3881/ab6ced
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2020
Young, L. A., Braga-Ribas, F., Johnson, R. E., 2020. Volatiles evolution and atmospheres of Trans-Neptunian objects. The Trans-Neptunian Solar System, pp. 127-151.
5-Mission Science (Arrokoth/2014 MU69)
2020
Spencer, J. R., et al., 2020. The geology and geophysics of Kuiper Belt object (486958) Arrokoth. Science 367, aay3999.
https://doi.org/10.1126/science.aay3999
5-Mission Science (Arrokoth/2014 MU69)
2020
McKinnon, W. B., et al., 2020. The solar nebula origin of (486958) Arrokoth, a primordial contact binary in the Kuiper Belt. Science 367, aay6620.
https://doi.org/10.1126/science.aay6620
5-Mission Science (Arrokoth/2014 MU69)
2020
Grundy, W. M., et al., 2020. Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth. Science 367, aay3705.
https://doi.org/10.1126/science.aay3705
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2020
Ahrens, C. J., 2020. Modeling cryogenic mud volcanism on Pluto. Journal of Volcanology and Geothermal Research 406, 107070.
https://doi.org/10.1016/j.jvolgeores.2020.107070
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2019
Ahrens, C. J., Chevrier, V. F., 2019. Compressional Ridges on Baret Montes, Pluto as Observed by New Horizons. Geophysical Research Letters 46, 14,328.
https://doi.org/10.1029/2019gl085648
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2020
Arimatsu, K., et al., 2020. Evidence for a rapid decrease of Pluto's atmospheric pressure revealed by a stellar occultation in 2019. Astronomy and Astrophysics 638, L5.
https://doi.org/10.1051/0004-6361/202037762
1-Mission Science (Pluto-System)
2020
Bertrand, T., Forget, F., Schmitt, B., White, O. L., Grundy, W. M., 2020. Equatorial mountains on Pluto are covered by methane frosts resulting from a unique atmospheric process. Nature Communications 11, 5056.
https://doi.org/10.1038/s41467-020-18845-3
1-Mission Science (Pluto-System)
2020
Bierson, C. J., Nimmo, F., Stern, S. A., 2020. Evidence for a hot start and early ocean formation on Pluto. Nature Geoscience 13, 468.
https://doi.org/10.1038/s41561-020-0595-0
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2020
Bromley, B. C., Kenyon, S. J., 2020. A Pluto-Charon Concerto: An Impact on Charon as the Origin of the Small Satellites. The Astronomical Journal 160, 85.
https://doi.org/10.3847/1538-3881/ab9e6c
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2020
Correia, A. C. M., 2020. Tidal evolution of the Pluto-Charon binary. Astronomy and Astrophysics 644, A94.
https://doi.org/10.1051/0004-6361/202038858
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2019
Kenyon, S. J., Bromley, B. C., 2019. A Pluto-Charon Sonata. III. Growth of Charon from a Circum-Pluto Ring of Debris. The Astronomical Journal 158, 142.
https://doi.org/10.3847/1538-3881/ab38b7
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2019
Kenyon, S. J., Bromley, B. C., 2019. A Pluto-Charon Sonata: Dynamical Limits on the Masses of the Small Satellites. The Astronomical Journal 158, 69.
https://doi.org/10.3847/1538-3881/ab2890
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2020
Kholshevnikov, K. V., Borukha, M. A., Eskin, B. B., Mikryukov, D. V., 2020. On the asphericity of the figures of Pluto and Charon. Planetary and Space Science 181, 104777.
https://doi.org/10.1016/j.pss.2019.104777
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2020
Kimura, J., Kamata, S., 2020. Stability of the subsurface ocean of pluto. Planetary and Space Science 181, 104828.
https://doi.org/10.1016/j.pss.2019.104828
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2020
Krasnopolsky, V. A., 2020. On the methylacetylene abundance and nitrogen isotope ratio in Pluto's atmosphere. Planetary and Space Science 192, 105044.
https://doi.org/10.1016/j.pss.2020.105044
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2020
Krasnopolsky, V. A., 2020. A photochemical model of Pluto's atmosphere and ionosphere. Icarus 335, 113374.
https://doi.org/10.1016/j.icarus.2019.07.008
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2019
Nadeau, A., Jaschke, E., 2019. Stable asymmetric ice belts in an energy balance model of Pluto. Icarus 331, 15.
https://doi.org/10.1016/j.icarus.2019.04.032
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2020
Rozner, M., Grishin, E., Perets, H. B., 2020. The wide-binary origin of the Pluto-Charon system. Monthly Notices of the Royal Astronomical Society 497, 5264.
https://doi.org/10.1093/mnras/staa2446
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2019
Sori, M. M., Bapst, J., Becerra, P., Byrne, S., 2019. Islands of ice on Mars and Pluto. Journal of Geophysical Research (Planets) 124, 2522.
https://doi.org/10.1029/2018je005861
1-Mission Science (Pluto-System)
2020
Steffl, A. J., et al., 2020. Pluto's Ultraviolet Spectrum, Surface Reflectance, and Airglow Emissions. The Astronomical Journal 159, 274.
https://doi.org/10.3847/1538-3881/ab8d1c
8-Additional Articles of Special Interest to New Horizons
2020
Stern, S. A., Tapley, M. B., Finley, T. J., Scherrer, J. R., 2020. Pluto Orbiter-Kuiper Belt Explorer: Mission Design for the Gold Standard. Journal of Spacecraft and Rockets 57, 956.
https://doi.org/10.2514/1.A34658
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2019
Zotos, E. E., Perdiou, A., Kalantonis, V., 2019. Numerical investigation for the dynamics of the planar circular Pluto-Charon system. Planetary and Space Science 179, 104718.
https://doi.org/10.1016/j.pss.2019.104718
1-Mission Science (Pluto-System)
2020
Rhoden, A. R., et al., 2020. Charon: A Brief History of Tides. Journal of Geophysical Research (Planets) 125, e06449.
https://doi.org/10.1029/2020je006449
1-Mission Science (Pluto-System)
2020
Cruikshank, D. P., Pendleton, Y. J., Grundy, W. M., 2020. Organic Components of Small Bodies in the Outer Solar System: Some Results of the New Horizons Mission. Life 10, 126.
https://doi.org/10.3390/life10080126
1-Mission Science (Pluto-System)
2019
Gladstone, G. R., Young, L. A., 2019. New Horizons Observations of the Atmosphere of Pluto. Annual Review of Earth and Planetary Sciences 47, 119.
https://doi.org/10.1146/annurev-earth-053018-060128
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2019
Greenstreet, S., Gladman, B., McKinnon, W. B., Kavelaars, J. J., Singer, K. N., 2019. Crater Density Predictions for New Horizons Flyby Target 2014 MU69. The Astrophysical Journal 872, L5.
https://doi.org/10.3847/2041-8213/ab01db
7-Spacecraft, Mission Design, Mission Operations
2019
Nelson, D. S., et al., 2019. Optical Navigation Preparations for the New Horizons Kuiper-Belt Extended Mission. Journal of the Astronautical Sciences 67, 1169.
https://doi.org/10.1007/s40295-019-00188-x
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2020
Amarante, A., Winter, O. C., 2020. Surface dynamics, equilibrium points and individual lobes of the Kuiper Belt object (486958) Arrokoth. Monthly Notices of the Royal Astronomical Society 496, 4154.
https://doi.org/10.1093/mnras/staa1732
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2020
Zhao, Y., Rezac, L., Skorov, Y., Hu, S. C., Samarasinha, N. H., Li, J.-Y., 2020. Sublimation as an effective mechanism for flattened lobes of (486958) Arrokoth. Nature Astronomy.
https://doi.org/10.1038/s41550-020-01218-7
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2020
Grishin, E., Malamud, U., Perets, H. B., Wandel, O., Schäfer, C. M., 2020. The wide-binary origin of (2014) MU69-like Kuiper belt contact binaries. Nature 580, 463.
https://doi.org/10.1038/s41586-020-2194-z
and Author Correction:
https://doi.org/10.1038/s41586-020-2351-4
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2020
Hirabayashi, M., Trowbridge, A. J., Bodewits, D., 2020. The Mysterious Location of Maryland on 2014 MU69 and the Reconfiguration of Its Bilobate Shape. The Astrophysical Journal 891, L12.
https://doi.org/10.3847/2041-8213/ab3e74
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Livadiotis, G., 2021. Radial Profile of the Polytropic Index of Solar Wind Plasma in the Heliosphere. Research Notes of the American Astronomical Society 5, 4.
https://doi.org/10.3847/2515-5172/abd7fc
4-Mission Science (Cruise Science, including Distant KBOs)
2020
Hill, M. E., et al., 2020. Influence of Solar Disturbances on Galactic Cosmic Rays in the Solar Wind, Heliosheath, and Local Interstellar Medium: Advanced Composition Explorer, New Horizons, and Voyager Observations. The Astrophysical Journal 905, 69.
https://doi.org/10.3847/1538-4357/abb408
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2020
Opher, M., Loeb, A., Drake, J., Toth, G., 2020. A small and round heliosphere suggested by magnetohydrodynamic modelling of pick-up ions. Nature Astronomy 4, 675.
https://doi.org/10.1038/s41550-020-1036-0
4-Mission Science (Cruise Science, including Distant KBOs)
2020
Keeney, B. A., et al., 2020. The Search for MeV Electrons 2-45 au from the Sun with the Alice Instrument Microchannel Plate Detector on board New Horizons. Research Notes of the American Astronomical Society 4, 61.
https://doi.org/10.3847/2515-5172/ab8fa7
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2020
Kimura, J., Kamata, S., 2020. Stability of the subsurface ocean of pluto. Planetary and Space Science 181, 104828.
https://doi.org/10.1016/j.pss.2019.104828
1-Mission Science (Pluto-System)
2021
Cruikshank, D. P., et al., 2021. Cryovolcanic flooding in Viking terra on Pluto. Icarus 356, 113786.
https://doi.org/10.1016/j.icarus.2020.113786
1-Mission Science (Pluto-System)
2021
Gabasova, L. R., et al., 2021. Global compositional cartography of Pluto from intensity-based registration of LEISA data. Icarus 356, 113833.
https://doi.org/10.1016/j.icarus.2020.113833
1-Mission Science (Pluto-System)
2021
Gladstone, G. R., et al., 2021. Constraints on Pluto's H and CH4 profiles from New Horizons Alice Ly ? observations. Icarus 356, 113973.
https://doi.org/10.1016/j.icarus.2020.113973
1-Mission Science (Pluto-System)
2021
Hofgartner, J. D., et al., 2021. Photometry of Kuiper belt object (486958) Arrokoth from New Horizons LORRI. Icarus 356, 113723.
https://doi.org/10.1016/j.icarus.2020.113723
4-Mission Science (Cruise Science, including Distant KBOs)
2021
Lauer, T. R., et al., 2021. New Horizons observations of the cosmic optical background. The Astrophysical Journal 906, 77.
https://doi.org/10.3847/1538-4357/abc881
1-Mission Science (Pluto-System)
2021
Lewis, B. L., et al., 2021. Distribution and energy balance of Pluto's nitrogen ice, as seen by New Horizons in 2015. Icarus 356, 113633.
https://doi.org/10.1016/j.icarus.2020.113633
5-Mission Science (Arrokoth/2014 MU69)
2021
Lisse, C. M., et al., 2021. On the origin & thermal stability of Arrokoth's and Pluto's ices. Icarus 356, 114072.
https://doi.org/10.1016/j.icarus.2020.114072
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Marohnic, J. C., et al., 2021. Constraining the final merger of contact binary (486958) Arrokoth with soft-sphere discrete element simulations. Icarus 356, 113824.
https://doi.org/10.1016/j.icarus.2020.113824
1-Mission Science (Pluto-System)
2021
Martin, C. R., Binzel, R. P., 2021. Ammonia-water freezing as a mechanism for recent cryovolcanism on Pluto. Icarus 356, 113763.
https://doi.org/10.1016/j.icarus.2020.113763
5-Mission Science (Arrokoth/2014 MU69)
2021
Schenk, P., et al., 2021. Origins of pits and troughs and degradation on a small primitive planetesimal in the Kuiper belt: High-resolution topography of (486958) Arrokoth (aka 2014 MU69) from New Horizons. Icarus 356, 113834.
https://doi.org/10.1016/j.icarus.2020.113834
4-Mission Science (Cruise Science, including Distant KBOs)
2021
Showalter, M. R., et al., 2021. A statistical review of light curves and the prevalence of contact binaries in the Kuiper belt. Icarus 356, 114098.
https://doi.org/10.1016/j.icarus.2020.114098
1-Mission Science (Pluto-System)
2021
Skjetne, H. L., et al., 2021. Morphological comparison of blocks in chaos terrains on Pluto, Europa, and Mars. Icarus 356, 113866.
https://doi.org/10.1016/j.icarus.2020.113866
1-Mission Science (Pluto-System)
2021
Stern, S. A., et al., 2021. Pluto's far side. Icarus 356, 113805.
https://doi.org/10.1016/j.icarus.2020.113805
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Ahrens, C. J., Chevrier, V. F., 2021. Investigation of the morphology and interpretation of Hekla Cavus, Pluto. Icarus 356, 114108.
https://doi.org/10.1016/j.icarus.2020.114108
8-Additional Articles of Special Interest to New Horizons
2020
Barbuzano, J., 2020. Arrokoth details reveal how planets form. Sky and Telescope 139, 11.
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Borrelli, M. E., Collins, G. C., 2021. Testing the cryovolcanism and plate bending hypotheses for Charon's smooth plains. Icarus 356, 113717.
https://doi.org/10.1016/j.icarus.2020.113717
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Chaufray, J.-Y., 2021. Departure of the thermal escape rate from the jeans escape rate for atomic hydrogen at Earth, Mars, and Pluto. Planetary and Space Science 198, 105178.
https://doi.org/10.1016/j.pss.2021.105178
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Chen, S., Young, E. F., Young, L. A., Bertrand, T., Forget, F., Yung, Y. L., 2021. Global climate model occultation lightcurves tested by August 2018 ground-based stellar occultation. Icarus 356, 113976.
https://doi.org/10.1016/j.icarus.2020.113976
1-Mission Science (Pluto-System)
2021
Conrad, J. W., Nimmo, F., Beyer, R. A., Bierson, C. J., Schenk, P. M., 2021. Heat flux constraints from variance spectra of Pluto and Charon using limb profile topography. Journal of Geophysical Research (Planets) 126, e06641.
https://doi.org/10.1029/2020je006641
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Denton, C. A., Johnson, B. C., Wakita, S., Freed, A. M., Melosh, H. J., Stern, S. A., 2021. Pluto's antipodal terrains imply a thick subsurface ocean and hydrated core. Geophysical Research Letters 48, e91596.
https://doi.org/10.1029/2020gl091596
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Hillier, J. H., Buratti, B. J., Hofgartner, J. D., Hicks, M. D., Devins, S., Kivrak, L., 2021. Characteristics of Pluto's haze and surface from an analytic radiative transfer model. The Planetary Science Journal 2, 11.
https://doi.org/10.3847/PSJ/abbdaf
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Jacobs, A. D., et al., 2021. LORRI observations of waves in Pluto's atmosphere. Icarus 356, 113825.
https://doi.org/10.1016/j.icarus.2020.113825
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Johnson, P. E., et al., 2021. Modeling Pluto's minimum pressure: Implications for haze production. Icarus 356, 114070.
https://doi.org/10.1016/j.icarus.2020.114070
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Katz, J. I., Wang, S., 2021. Arrokoth's necklace. Monthly Notices of the Royal Astronomical Society.
https://doi.org/10.1093/mnras/stab718
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2020
Lavvas, P., et al., 2020. A major ice component in Pluto's haze. Nature Astronomy.
https://doi.org/10.1038/s41550-020-01270-3
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Lyra, W., Youdin, A. N., Johansen, A., 2021. Evolution of MU69 from a binary planetesimal into contact by Kozai-Lidov oscillations and nebular drag. Icarus 356, 113831.
https://doi.org/10.1016/j.icarus.2020.113831
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Morbidelli, A., Nesvorny, D., Bottke, W. F., Marchi, S., 2021. A re-assessment of the Kuiper belt size distribution for sub-kilometer objects, revealing collisional equilibrium at small sizes. Icarus 356, 114256.
https://doi.org/10.1016/j.icarus.2020.114256
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
O'Hara, S. T., Dombard, A. J., 2021. Downhill sledding at 40 AU: Mobilizing Pluto's chaotic mountain blocks. Icarus 356, 113829.
https://doi.org/10.1016/j.icarus.2020.113829
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Renaud, J. P., et al., 2021. Tidal dissipation in dual-body, highly eccentric, and nonsynchronously rotating systems: Applications to Pluto-Charon and the exoplanet trappist-1e. The Planetary Science Journal 2, 4.
https://doi.org/10.3847/PSJ/abc0f3
1-Mission Science (Pluto-System)
2021
Robbins, S. J., et al., 2021. Depths of Pluto's and Charon's craters, and their simple-to-complex transition. Icarus 356, 113902.
https://doi.org/10.1016/j.icarus.2020.113902
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Rollin, G., Shevchenko, I. I., Lages, J., 2021. Dynamical environments of MU69 and similar objects. Icarus 357, 114178.
https://doi.org/10.1016/j.icarus.2020.114178
1-Mission Science (Pluto-System)
2020
Schenk, P. M., Moore, J. M., 2020. Topography and geology of uranian mid-sized icy satellites in comparison with saturnian and plutonian satellites. Philosophical Transactions of the Royal Society of London Series A 378, 20200102.
https://doi.org/10.1098/rsta.2020.0102
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Steckloff, J. K., Lisse, C. M., Safrit, T. K., Bosh, A. S., Lyra, W., Sarid, G., 2021. The sublimative evolution of (486958) Arrokoth. Icarus 356, 113998.
https://doi.org/10.1016/j.icarus.2020.113998
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Villaça, C. V. N., Crósta, A. P., Grohmann, C. H., 2021. Morphometric analysis of Pluto's impact craters. Remote Sensing 13, 377.
https://doi.org/10.3390/rs13030377
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Zhao, Y., Rezac, L., Skorov, Y., Hu, S. C., Samarasinha, N. H., Li, J.-Y., 2021. Sublimation as an effective mechanism for flattened lobes of (486958) Arrokoth. Nature Astronomy 5, 139.
https://doi.org/10.1038/s41550-020-01218-7
4-Mission Science (Cruise Science, including Distant KBOs)
2019
Verbiscer, A. J., et al., 2019. Phase curves from the Kuiper belt: Photometric properties of distant Kuiper belt objects observed by New Horizons. The Astronomical Journal 158.
https://doi.org/10.3847/1538-3881/ab3211
4-Mission Science (Cruise Science, including Distant KBOs)
2021
McComas, D.J., et al., 2021. Interstellar pickup ion observations halfway to the termination shock. The Astrophysical Journal Supplement Series 254, 19.
https://doi.org/10.3847/1538-4365/abee76
7-Spacecraft, Mission Design, Mission Operations
2017
Bushman, S. S., “Performance of the New Horizons Propulsion System through the Pluto System Encounter,” AIAA Paper 2017-4746, AIAA Propulsion and Energy Forum and Exposition 2017, Atlanta, GA, 10-12 July 2017.
https://doi.org/10.2514/6.2017-4746
7-Spacecraft, Mission Design, Mission Operations
2012
Bushman, S. S., (2012) “Evaluation of Microorganism Growth in Water–Loaded New Horizons and STEREO Propellant Tanks," 47th Joint Propulsion Conference, AIAA Paper 2011–6115, July 2011, San Diego, CA.
https://doi.org/10.2514/6.2011-6115
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Zaveri, N., Malhotra, R., 2021, Pluto's Resonant Orbit Visualized in 4D, Research Notes of the American Astronomical Society 5, 235.
https://doi.org/10.3847/2515-5172/ac3086
1-Mission Science (Pluto-System)
2021
Young, L.A., et al., 2021, Pluto's volatile and climate cycles on short and long timescales, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 321-361.
https://doi.org/10.2458/azu_uapress_9780816540945-ch014
1-Mission Science (Pluto-System)
2021
White, O.L., et al., 2021, The geology of Pluto, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 55-87.
https://doi.org/10.2458/azu_uapress_9780816540945-ch004
4-Mission Science (Cruise Science, including Distant KBOs)
2022
Weaver, H.A., et al., 2022, High-resolution Search for Kuiper Belt Object Binaries from New Horizons, The Planetary Science Journal 3, 46.
https://doi.org/10.3847/PSJ/ac4cb7
7-Spacecraft, Mission Design, Mission Operations
2021
Weaver, H.A., 2021, Appendix B: The New Horizons instrument suite, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 641-644.
https://doi.org/10.2458/azu_uapress_9780816540945-ch028
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Villaça, C.V.N., Crósta, A.P., Grohmann, C.H., 2021, Morphometric Analysis of Pluto's Impact Craters, Remote Sensing 13, 377.
https://doi.org/10.3390/rs13030377
4-Mission Science (Cruise Science, including Distant KBOs)
2022
Verbiscer, A., et al., 2022, The diverse shapes of dwarf planet and large KBO phase curves observed by New Horizons, Planetary Science Journal 3, 95.
https://doi.org/10.3847/PSJ/ac63a6
1-Mission Science (Pluto-System)
2021
Umurhan, O.M., Ahrens, C.J., Chevrier, V.F., 2021, Rheological and thermophysical properties and some processes involving common volatile materials found on Pluto's surface, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 195-255.
https://doi.org/10.2458/azu_uapress_9780816540945-ch010
1-Mission Science (Pluto-System)
2021
Summers, M.E., et al., 2021, Composition and structure of Pluto's atmosphere, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 257-278.
https://doi.org/10.2458/azu_uapress_9780816540945-ch011
1-Mission Science (Pluto-System)
2021
Strobel, D.F., 2021, Atmospheric escape, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 363-377.
https://doi.org/10.2458/azu_uapress_9780816540945-ch015
5-Mission Science (Arrokoth/2014 MU69)
2021
Stern, S.A., et al., 2021, The exploration of the primordial Kuiper belt object Arrokoth (2014 MU69), In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 587-601.
https://doi.org/10.2458/azu_uapress_9780816540945-ch025
5-Mission Science (Arrokoth/2014 MU69)
2021
Stern, S.A., et al., 2021, Some New Results and Perspectives Regarding the Kuiper Belt Object Arrokoth's Remarkable, Bright Neck, The Planetary Science Journal 2, 87.
https://doi.org/10.3847/PSJ/abee26
5-Mission Science (Arrokoth/2014 MU69)
2021
Stern, S.A., et al., 2021, New Investigations of Dark-floored Pits In the Volatile Ice of Sputnik Planitia on Pluto, Astron. J. 162, 207.
https://doi.org/10.3847/1538-3881/ac24a6
1-Mission Science (Pluto-System)
2021
Spencer, J.R., et al., 2021, The geology and geophysics of Charon, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 395-412.
https://doi.org/10.2458/azu_uapress_9780816540945-ch017
1-Mission Science (Pluto-System)
2021
Soluri, M., 2021, Epilogue: New Horizons - An abbreviated photographic journal, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 603-626.
https://doi.org/10.2458/azu_uapress_9780816540945-ch026
1-Mission Science (Pluto-System)
2022
Singer, K.N., et al., 2022, Large-scale cryovolcanic resurfacing on Pluto, Nature Communications 13, 1542.
https://doi.org/10.1038/s41467-022-29056-3
1-Mission Science (Pluto-System)
2021
Singer, K.N., et al., 2021, Impact craters on Pluto and Charon and terrain age estimates, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 121-145.
https://doi.org/10.2458/azu_uapress_9780816540945-ch007
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Shimoni, Y., Aharonson, O., Rufu, R., 2021, The influence of Equation of State on impact dynamics between Pluto-like bodies, pp. arXiv:2109.05051.
1-Mission Science (Pluto-System)
2021
Scipioni, F., et al., 2021, Pluto's Sputnik Planitia: Composition of geological units from infrared spectroscopy, Icarus 359, 114303.
https://doi.org/10.1016/j.icarus.2021.114303
1-Mission Science (Pluto-System)
2021
Schenk, P., et al., 2021, Triton: Topography and Geology of a Probable Ocean World with Comparison to Pluto and Charon, Remote Sensing 13, 3476.
https://doi.org/10.3390/rs13173476
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Roser, J.E., et al., 2021, The Infrared Complex Refractive Index of Amorphous Ammonia Ice at 40 K (1.43-22.73 ?m) and Its Relevance to Outer Solar System Bodies, The Planetary Science Journal 2, 240.
https://doi.org/10.3847/PSJ/ac3336
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Rollin, G., Shevchenko, I.I., Lages, J., 2021, Dynamical environments of MU69 and similar objects, Icarus 357, 114178.
https://doi.org/10.1016/j.icarus.2020.114178
1-Mission Science (Pluto-System)
2021
Robbins, S.J., Singer, K.N., 2021, Pluto and Charon Impact Crater Populations: Reconciling Different Results, The Planetary Science Journal 2, 192.
https://doi.org/10.3847/PSJ/ac0e94
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Renaud, J.P., et al., 2021, Tidal Dissipation in Dual-body, Highly Eccentric, and Nonsynchronously Rotating Systems: Applications to Pluto-Charon and the Exoplanet TRAPPIST-1e, The Planetary Science Journal 2, 4.
https://doi.org/10.3847/PSJ/abc0f3
1-Mission Science (Pluto-System)
2021
Protopapa, S., et al., 2021, Surface composition of Charon, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 433-456.
https://doi.org/10.2458/azu_uapress_9780816540945-ch019
1-Mission Science (Pluto-System)
2021
Porter, S.B., et al., 2021, The small satellites of Pluto, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 457-472.
https://doi.org/10.2458/azu_uapress_9780816540945-ch020
4-Mission Science (Cruise Science, including Distant KBOs)
2022
Porter, S.B., et al., 2022, Orbits and Occultation Opportunities of 15 TNOs Observed by New Horizons, The Planetary Science Journal 3, 23.
https://doi.org/10.3847/PSJ/ac3491
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Person, M.J., et al., 2021, Haze in Pluto's atmosphere: Results from SOFIA and ground-based observations of the 2015 June 29 Pluto occultation, Icarus 356, 113572.
https://doi.org/10.1016/j.icarus.2019.113572
1-Mission Science (Pluto-System)
2021
Parker, A.H., 2021, Transneptunian space and the post-Pluto paradigm, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 545-568.
https://doi.org/10.2458/azu_uapress_9780816540945-ch023
1-Mission Science (Pluto-System)
2021
Olkin, C.B., et al., 2021, Colors and photometric properties of Pluto, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 147-163.
https://doi.org/10.2458/azu_uapress_9780816540945-ch008
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Oliveira, P.R.B., et al., 2021, Energetic ion irradiation of N2O ices relevant for Solar system surfaces, Mon. Not. R. Astron. Soc. 502, 1423.
https://doi.org/10.1093/mnras/stab083
1-Mission Science (Pluto-System)
2021
Nimmo, F., McKinnon, W.B., 2021, Geodynamics of Pluto, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 89-103.
https://doi.org/10.2458/azu_uapress_9780816540945-ch005
7-Spacecraft, Mission Design, Mission Operations
2022
Nelson, D.S., et al., 2021, Navigation and Orbit Estimation for New Horizons' Arrokoth Flyby: Overview, Results and Lessons Learned, Space Sci. Rev. 218, 11.
https://doi.org/10.1007/s11214-022-00877-4
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Morison, A., Labrosse, S., Choblet, G., 2021, Sublimation-driven convection in Sputnik Planitia on Pluto, Nature 600, 419.
https://doi.org/10.1038/s41586-021-04095-w
1-Mission Science (Pluto-System)
2021
Moore, J.M., McKinnon, W.B., 2021, Geologically Diverse Pluto and Charon: Implications for the Dwarf Planets of the Kuiper Belt, Annu. Rev. Earth Planet Sci. 49.
https://doi.org/10.1146/annurev-earth-071720-051448
1-Mission Science (Pluto-System)
2021
Moore, J.M., Howard, A.D., 2021, The landscapes of Pluto as witness to climate evolution, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 105-120.
https://doi.org/10.2458/azu_uapress_9780816540945-ch006
1-Mission Science (Pluto-System)
2021
McKinnon, W.B., et al., 2021, Formation, composition, and history of the Pluto system: A post-New Horizons synthesis, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 507-543.
https://doi.org/10.2458/azu_uapress_9780816540945-ch022
1-Mission Science (Pluto-System)
2021
McGovern, P.J., White, O.L., Schenk, P.M., 2021, Tectonism and Enhanced Cryovolcanic Potential Around a Loaded Sputnik Planitia Basin, Pluto, Journal of Geophysical Research: Planets 126, e2021JE006964.
https://doi.org/10.1029/2021JE006964
5-Mission Science (Arrokoth/2014 MU69)
2021
Mao, X., et al., 2021, Collisions of small Kuiper belt objects with (486958) Arrokoth: Implications for its spin evolution and bulk density, JGR Planets 126, e2021JE006961.
https://doi.org/10.1029/2021JE006961
1-Mission Science (Pluto-System)
2021
Mandt, K.E., et al., 2021, Photochemistry and haze formation, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 279-296.
https://doi.org/10.2458/azu_uapress_9780816540945-ch012
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Mahjoub, A., et al., 2021, Effect of H2S on the Near-infrared Spectrum of Irradiation Residue and Applications to the Kuiper Belt Object (486958) Arrokoth, Astrophys J. 914, L31.
https://doi.org/10.3847/2041-8213/ac044b
1-Mission Science (Pluto-System)
2021
Lunine, J.I., et al., 2021, Early Pluto science, the imperative for exploration, and New Horizons, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 9-20.
https://doi.org/10.2458/azu_uapress_9780816540945-ch002
1-Mission Science (Pluto-System)
2021
Linscott, I.R., et al., 2021, High-resolution radiometry of Pluto at 4.2 cm with New Horizons, Icarus 363, 114430.
https://doi.org/10.1016/j.icarus.2021.114430
1-Mission Science (Pluto-System)
2021
Lauer, T.R., et al., 2021, The Dark Side of Pluto, The Planetary Science Journal 2, 214.
https://doi.org/10.3847/PSJ/ac2743
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Kenyon, S.J., Bromley, B.C., 2021, A Pluto-Charon Concerto. II. Formation of a Circumbinary Disk of Debris after the Giant Impact, Astron. J. 161, 211.
https://doi.org/10.3847/1538-3881/abe858
1-Mission Science (Pluto-System)
2021
Keeney, B.A., et al., 2021, On Charon's Far-ultraviolet Surface Reflectance, The Planetary Science Journal 2, 164.
https://doi.org/10.3847/PSJ/ac16da
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Jovanovi?, L., et al., 2021, Optical constants of Pluto aerosol analogues from UV to near-IR, Icarus 362, 114398.
https://doi.org/10.1016/j.icarus.2021.11439
1-Mission Science (Pluto-System)
2021
Johnson, P.E., et al., 2021, New Constraints on Pluto's Sputnik Planitia Ice Sheet from a Coupled Reorientation-Climate Model, The Planetary Science Journal 2, 194.
https://doi.org/10.3847/PSJ/ac1d42
1-Mission Science (Pluto-System)
2021
Howett, C.J.A., et al., 2021, Charon: Colors and photometric properties, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 413-432.
https://doi.org/10.2458/azu_uapress_9780816540945-ch018
7-Spacecraft, Mission Design, Mission Operations
2021
Houlihan, D., Symons, T., Zemcov, M., 2021, An Assessment of the LEISA Spectrometer for Extragalactic Background Light Measurements, Research Notes of the American Astronomical Society 5, 187.
https://doi.org/10.3847/2515-5172/ac1ba9
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Golabek, G.J., Jutzi, M., 2021, Modification of icy planetesimals by early thermal evolution and collisions: Constraints for formation time and initial size of comets and small KBOs, Icarus 363, 114437.
https://doi.org/10.1016/j.icarus.2021.114437
4-Mission Science (Cruise Science, including Distant KBOs)
2021
Gladstone, G.R., et al., 2021, New Horizons Detection of the Local Galactic Lyman-? Background, Astron. J. 162, 241.
https://doi.org/10.3847/1538-3881/ac23cd
1-Mission Science (Pluto-System)
2021
Forget, F., et al., 2021, Dynamics of Pluto's atmosphere, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 297-319.
https://doi.org/10.2458/azu_uapress_9780816540945-ch013
1-Mission Science (Pluto-System)
2021
Fayolle, M., et al., 2021, Testing tholins as analogues of the dark reddish material covering Pluto's Cthulhu region, Icarus 367, 114574.
https://doi.org/10.1016/j.icarus.2021.114574
1-Mission Science (Pluto-System)
2021
Cruikshank, D.P., et al., 2021, Surface composition of Pluto, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 165-193.
https://doi.org/10.2458/azu_uapress_9780816540945-ch009
1-Mission Science (Pluto-System)
2021
Canup, R.M., Kratter, K.M., Neveu, M., 2021, On the origin of the Pluto system, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 475-506.
https://doi.org/10.2458/azu_uapress_9780816540945-ch021
1-Mission Science (Pluto-System)
2021
Buratti, B.J., et al., 2021, Pluto in Glory: Discovery of Its Huge Opposition Surge, Geophys. Res. Lett. 48, e92562.
https://doi.org/10.1029/2021gl092562
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Bull, R., et al., 2021, Optical Gravimetry mass measurement performance for small body flyby missions, Planet. Space Sci. 205, 105289.
https://doi.org/10.1016/j.pss.2021.105289
1-Mission Science (Pluto-System)
2021
Buie, B.W., et al., 2021, Future exploration of the Pluto system, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 569-586.
https://doi.org/10.2458/azu_uapress_9780816540945-ch024
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Bromley, B.C., Kenyon, S.J., 2021, On the Estimation of Circumbinary Orbital Properties, Astron. J. 161, 25.
https://doi.org/10.3847/1538-3881/abcbfb
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Boström, M., et al., 2021, Self-preserving ice layers on CO2 clathrate particles: Implications for Enceladus, Pluto, and similar ocean worlds, A & A 650, A54.
https://doi.org/10.1051/0004-6361/202040181
1-Mission Science (Pluto-System)
2021
Binzel, R.P., Schindler, K., 2021, The discoveries of Pluto and Kuiper belt, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 3-8.
https://doi.org/10.2458/azu_uapress_9780816540945-ch001
1-Mission Science (Pluto-System)
2021
Beyer, R.A., et al., 2021, Charon's Far Side Geomorphology, The Planetary Science Journal 2, 141.
https://doi.org/10.3847/PSJ/ac09e9
4-Mission Science (Cruise Science, including Distant KBOs)
2022
Bernardoni, E., et al., 2022, Student Dust Counter Status Report: The First 50 au, The Planetary Science Journal 3, 69.
https://doi.org/10.3847/PSJ/ac5ab7
1-Mission Science (Pluto-System)
2021
Barucci, M.A., Dalle Ore, C., Fornasier, S., 2021, The transneptunian objects as the context for Pluto, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 21-52.
https://doi.org/10.2458/azu_uapress_9780816540945-ch003
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Bagheri, A., et al., 2021, The Tidal-Thermal Evolution of the Pluto-Charon System, pp. arXiv:2109.13206.
1-Mission Science (Pluto-System)
2021
Bagenal, F., et al., 2021, Solar wind interaction with the Pluto system, In: Stern, S. A., Moore, J. M., Grundy, W. M., Young, L. A., Binzel, R. P., (Eds.), The Pluto System After New Horizons. University of Arizona Press Tucson pp. 379-392.
https://doi.org/10.2458/azu_uapress_9780816540945-ch016
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Ackley, P.C., et al., 2021, Hybrid dust-tracking method for modeling Io's Tvashtar volcanic plume, Icarus 359, 114274.
https://doi.org/10.1016/j.icarus.2020.114274
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2021
Abedin, A.Y., et al., 2021, OSSOS. XXI. Collision Probabilities in the Edgeworth-Kuiper Belt, Astron. J. 161, 195.
https://doi.org/10.3847/1538-3881/abe418
5-Mission Science (Arrokoth/2014 MU69)
2022
Umurhan, O.M., et al., 2022. A near-surface temperature model of Arrokoth. The Planetary Science Journal 3, 110.
https://doi.org/10.3847/PSJ/ac5d3d
4-Mission Science (Cruise Science, including Distant KBOs)
2022
Lisse, C.M., et al., 2022. A predicted dearth of majority hypervolatile ices in Oort Cloud comets. The Planetary Science Journal 3, 112.
https://doi.org/10.3847/PSJ/ac6097
4-Mission Science (Cruise Science, including Distant KBOs)
2022
Lauer, T.R., et al., 2022. Anomalous flux in the cosmic optical background detected with New Horizons observations. Astrophys J. 927, L8.
https://doi.org/10.3847/2041-8213/ac573d
5-Mission Science (Arrokoth/2014 MU69)
2022
Keane, J.T., et al., 2022. The geophysical environment of (486958) Arrokoth—a small Kuiper belt object explored by New Horizons. J. Geophys. Res. Planets 127, e07068.
https://doi.org/10.1029/2021je007068
5-Mission Science (Arrokoth/2014 MU69)
2022
Gladstone, G.R., et al., 2022. Upper limits on the escape of volatiles from (486958) Arrokoth using New Horizons Alice ultraviolet spectrograph observations. The Planetary Science Journal 3, 111.
https://doi.org/10.3847/PSJ/ac6098
1-Mission Science (Pluto-System)
2022
Earle, A.M., et al., 2022. Tracing seasonal trends across Pluto's craters: New Horizons Ralph/MVIC results. Icarus 373, 114771.
https://doi.org/10.1016/j.icarus.2021.114771
5-Mission Science (Arrokoth/2014 MU69)
2022
Bird, M.K., et al., 2022. Detection of radio thermal emission from the Kuiper belt object (486958) Arrokoth during the New Horizons encounter. The Planetary Science Journal 3, 109.
https://doi.org/10.3847/PSJ/ac5d45
4-Mission Science (Cruise Science, including Distant KBOs)
2022
McComas, D. J., Shrestha, B. L., Swaczyna, P., Rankin, J. S., Weidner, S. E., Zirnstein, E. J., Elliott, H. A. et al. (2022). First High-resolution Observations of Interstellar Pickup Ion Mediated Shocks in the Outer Heliosphere. The Astrophysical Journal, 934(2), 147.
https://doi.org/10.3847/1538-4357/AC7956
4-Mission Science (Cruise Science, including Distant KBOs)
2022
Zirnstein, E. J., Möbius, E., Zhang, M., Bower, J., Elliott, H. A., McComas, D. J., et al. (2022). In Situ Observations of Interstellar Pickup Ions from 1 au to the Outer Heliosphere. Space Science Reviews 2022 218:4, 218(4), 1–41.
https://doi.org/10.1007/S11214-022-00895-2
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2022
Fraternale, F., Adhikari, L., Fichtner, H., Kim, T. K., Kleimann, J., Oughton, S., et al. (2022). Turbulence in the outer heliosphere. Space Science Reviews, 218(6), 50.
https://doi.org/10.1007/s11214-022-00914-2
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2022
Keebler, T. B., Tóth, G., Zieger, B., Opher, M., Keebler, T. B., Tóth, G., et al. (2022). MSWIM2D: Two-dimensional Outer Heliosphere Solar Wind Modeling. Astrophysical Journal, Supplement Series, 260(2), 43.
https://doi.org/10.3847/1538-4365/AC67EB
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2022
Richardson, J. D., Burlaga, L. F., Elliott, H. A., Kurth, W. S., Liu, Y. D., & von Steiger, R. (2022). Observations of the Outer Heliosphere, Heliosheath, and Interstellar Medium. Space Science Reviews 2022 218:4, 218(4), 1–42.
https://doi.org/10.1007/S11214-022-00899-Y
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2022
Sokól, J. M., Kucharek, H., Baliukin, I. I., Fahr, H., Izmodenov, V. V., Kornbleuth, M., et al. (2022). Interstellar Neutrals, Pickup Ions, and Energetic Neutral Atoms Throughout the Heliosphere: Present Theory and Modeling Overview. Space Science Reviews 2022 218:3, 218(3), 1–55.
https://doi.org/10.1007/S11214-022-00883-6
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2022
Lisse, C. M., Gladstone, G. R., Young, L. A., Cruikshank, D. P., Sandford, S. A., Schmitt, B., Stern, S. A., Weaver, H. A., Umurhan, O., Pendleton, Y. J., Keane, J. T., Parker, J. M., Binzel, R. P., Earle, A. M., Horanyi, M., El-Maarry, M., Cheng, A. F., Moore, J. M., McKinnon, W. B., Grundy, W. M., Kavelaars, J. J., Linscott, I. R., Lyra, W., Lewis, B. L., Britt, D. T., Spencer, J. R., Olkin, C. B., McNutt, R. L., Elliott, H. A., Dello-Russo, N., Steckloff, J. K., Neveu, M.,Mousis, O. (2022). A Predicted Dearth of Majority Hypervolatile Ices in Oort Cloud Comets. The Planetary Science Journal, 3(5), 112.
https://doi.org/10.3847/PSJ/AC6097
4-Mission Science (Cruise Science, including Distant KBOs)
2023
Brandt, P. C., Provornikova, E., Bale, S. D., Cocoros, A., DeMajistre, R., Dialynas, K., Elliott, H. A. et al. (2023). Future Exploration of the Outer Heliosphere and Very Local Interstellar Medium by Interstellar Probe. Space Science Reviews 2023 219:2, 219(2), 1–71.
https://doi.org/10.1007/S11214-022-00943-X
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2023
Fraternale, F., Pogorelov, N. V., & Bera, R. K. (2023). The Role of Electrons and Helium Atoms in Global Modeling of the Heliosphere. The Astrophysical Journal, 946(2), 97.
https://doi.org/10.3847/1538-4357/ACBA10
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2023
Emran, A., et al., 2023, Pluto's Surface Mapping Using Unsupervised Learning from Near-infrared Observations of LEISA/Ralph, The Planetary Science Journal 4, 15.
https://doi.org/10.3847/PSJ/acb0cc
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2023
Gakis, D., Gourgouliatos, K.N., 2023, Orbital analysis of the Pluto-Charon moon system's mutual interactions and forced frequencies, A & A 670, A152.
https://doi.org/10.1051/0004-6361/202244717
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2023
Wang, J., et al., 2023, Impacts of Organic Ice Condensation on the Optical Properties of Haze on Pluto, The Planetary Science Journal 4, 17.
https://doi.org/10.3847/PSJ/acaf30
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2022
Kenyon, S.J., Bromley, B.C., 2022, A Pluto-Charon Sonata IV. Improved Constraints on the Dynamical Behavior and Masses of the Small Satellites, Astron. J. 163, 238.
https://doi.org/10.3847/1538-3881/ac6188
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2022
Kihoulou, M., Kalousová, K., Sou?ek, O., 2022, Evolution of Pluto's Impact-Deformed Ice Shell Below Sputnik Planitia Basin, J. Geophys. Res. Planets 127, e07221.
https://doi.org/10.1029/2022je007221
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2022
Tan, S.P., 2022, Low-pressure and low-temperature phase equilibria applied to Pluto's lower atmosphere, Mon. Not. R. Astron. Soc. 515, 1690-1698.
https://doi.org/10.1093/mnras/stac1884
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2023
Denton, C.A., et al., 2023, The formation and evolution of Pluto's Sputnik basin prior to nitrogen ice fill, Icarus 398, 115541.
https://doi.org/10.1016/j.icarus.2023.115541
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2022
Ali-Dib, M., 2022, A machine-generated catalogue of Charon's craters and implications for the Kuiper belt, Icarus 386, 115142.
https://doi.org/10.1016/j.icarus.2022.115142
1-Mission Science (Pluto-System)
2023
Cook, J.C., et al., 2023, Analysis of Charon's spectrum at 2.21- ?m from New Horizons/LEISA and Earth-based observations, Icarus 389, 115242.
https://doi.org/10.1016/j.icarus.2022.115242
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2022
Giuppone, C.A., et al., 2022, Past and present dynamics of the circumbinary moons in the Pluto-Charon system, A & A 658, A99.
https://doi.org/10.1051/0004-6361/202141687
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2022
Menten, S.M., Sori, M.M., Bramson, A.M., 2022, Endogenically sourced volatiles on Charon and other Kuiper belt objects, Nature Communications 13, 4457.
https://doi.org/10.1038/s41467-022-31846-8
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2023
Rhoden, A.R., Rudolph, M.L., Manga, M., 2023, The challenges of driving Charon's cryovolcanism from a freezing ocean, Icarus 392, 115391.
https://doi.org/10.1016/j.icarus.2022.115391
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2022
Teolis, B., et al., 2022, Extreme Exospheric Dynamics at Charon: Implications for the Red Spot, Geophys. Res. Lett. 49, e97580.
https://doi.org/10.1029/2021gl097580
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2023
Symons, T., et al., 2023, A Measurement of the Cosmic Optical Background and Diffuse Galactic Light Scaling from the R < 50 au New Horizons-LORRI Data, Astrophys J. 945, 45.
https://doi.org/10.3847/1538-4357/acaa37
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2022
Nakayama, K., Yin, W., 2022, Anisotropic cosmic optical background bound for decaying dark matter in light of the LORRI anomaly, Physical Review D 106, 103505.
https://doi.org/10.1103/PhysRevD.106.103505
6-Publications inspired by or relevant to New Horizons (Pre- and Post-Pluto Encounter)
2022
Simon, J.B., et al., 2022, Comets and Planetesimal Formation, pp. arXiv:2212.04509.