New Horizons
NASA's Mission to Pluto and the Kuiper Belt
Mission
Mission
The New Horizons Mission
Spacecraft
Spacecraft Systems and Components
Payload
Ground Stations
Data Collection
Where is New Horizons?
Current Position
Passing the Planets
Journey through the Kuiper Belt
Science Operations Center
Publications
Q&A
The Path to Pluto and Beyond
Mission Design
Mission Timeline
Launch
Jupiter Encounter
Pluto Flyby
The Path to Arrokoth
2019 Onward
The Team
Arrokoth
Arrokoth
About the Kuiper Belt
About Gerard Kuiper
About Arrokoth (2014 MU69)
Exploring the Kuiper Belt
Publications
Pluto
Pluto
Why Pluto?
About Clyde Tombaugh
The Pluto System
Pluto
Charon
Moons
Publications
News Center
News Center
News Archive
Current
Archives
PI Twitter Feed
The PI's Perspective
Current
Archives
Science Perspective
Pluto Perspective
Discovery Stories
Science Shorts
Media Contacts
Resources
Fact Sheets
Press Kits
Press Conferences
Publications
Glossary
Subscribe to eNews
Galleries
Galleries
Images
Featured Images
Spacecraft Photos
Launch Photos
Event Photos
Raw Images
Arrokoth Encounter
Pluto Encounter
Jupiter Encounter
Podcasts
Videos
Animations
Live Events
Data Movies
Mission Videos
Graphics
Artist Renderings
Exhibit Artwork
Infographics
Posters
Printables
Image/Video Use Policy
Learn
Learn
Interactives
Chat with the Team
Pluto Pals
Names to Pluto
Eyes on the Solar System
Student Dust Counter
Fun Facts
Activities
Educational Materials
Models
Get Involved
Features
Toolkit
Pluto Flyby Memories
Educator Fellows
Parallax Program
Uranus-Neptune Observations
x
Resources
Toolkit
Fact Sheets
Press Kits
Press Conferences
Publications
Glossary
Featured Video
Loading the player...
View all videos »
Galleries
Images > Featured Images
Featured Images
Spacecraft Photos
Launch Photos
Event Photos
Click on image to enlarge.
Two Moons Meet over Jupiter
Release Date:
April 2, 2007
Keywords:
Amirani
,
artistic
,
Europa
,
Io
,
Jupiter
,
lava
,
LORRI
,
plume(s)
,
Prometheus
,
Tvashtar
,
volcanic
This beautiful image of the crescents of volcanic Io and more sedate Europa was snapped by New Horizons' color Multispectral Visual Imaging Camera (MVIC) at 10:34 UT on March 2, 2007, about two days after New Horizons made its closest approach to Jupiter.
The picture was one of a handful of the Jupiter system that New Horizons took primarily for their artistic, rather than scientific value. This particular scene was suggested by space enthusiast Richard Hendricks of Austin, Texas, in response to an Internet request by New Horizons scientists for evocative, artistic imaging opportunities at Jupiter.
This image was taken from a range of 4.6 million kilometers (2.8 million miles) from Io and 3.8 million kilometers (2.4 million miles) from Europa. Although the moons appear close in this view, a gulf of 790,000 kilometers (490,000 miles) separates them. The night side of Io is illuminated here by light reflected from Jupiter, which is out of the frame to the right. Europa's night side is completely dark, in contrast to Io, because that side of Europa faces away from Jupiter.
Here, Io steals the show with its beautiful display of volcanic activity. Three volcanic plumes are visible. Most conspicuous is the enormous 300-kilometer (190-mile) -high plume from the Tvashtar volcano at the 11 o'clock position on Io's disk. Two much smaller plumes are barely visible: one from the volcano Prometheus, at the 9 o'clock position on the edge of Io's disk, and one from the volcano Amirani, seen between Prometheus and Tvashtar along Io's terminator (the line dividing day and night). The plumes appear blue because of the scattering of light by tiny dust particles ejected by the volcanoes, similar to the blue appearance of smoke. In addition, the contrasting red glow of hot lava can be seen at the source of the Tvashtar plume.
The images are centered at 1 degree north, 60 degrees west on Io, and 0 degrees north, 149 degrees west on Europa. The color in this image was generated using individual MVIC images at wavelengths of 480, 620 and 850 nanometers. The human eye is sensitive to slightly shorter wavelengths, from 400 to 700 nanometers, and thus would see the scene slightly differently. For instance, while the eye would notice the difference between the yellow and reddish brown colors of Io's surface and the paler color of Europa, the two worlds appear very similar in color to MVIC's longer-wavelength vision. The night side of Io appears greenish compared to the day side, because methane in Jupiter's atmosphere absorbs 850-nanometer light and makes Jupiter-light green to MVIC's "eyes."
MVIC is a component of the Ralph imaging instrument.
Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
« Prev
Next »