Anne Verbiscer Deputy Project Scientist New Horizons Kuiper Belt Extended Mission

The Far-Reaching Implications of KBO Observations from a Spacecraft in the Outer Solar System

> New Horizons STM 55 APL 24 January 2024

New Horizons' Unique Perspective From its Journey Through the Solar System

Jupiter System February 2007

Pluto System July 2015

KBOs 2016-2028

Launch January 2006

It's all about the viewing geometry...

Jupiter System February 2007

Pluto System July 2015

KBOs 2016-2028

Launch January 2006

No other spacecraft in flight (or planned) to the Outer Solar System Beyond the Kuiper Belt

Jupiter System February 2007

Pluto System July 2015

KBOs 2016-2028

Launch January 2006

Since 2007, New Horizons has made unresolved observations of dwarf planets and other Kuiper Belt Objects (KBOs) at unique viewing geometries only possible from a spacecraft in the outer solar system • Solar phase curves characterize surface microphysical properties

- Enable searches for binarity
- Rotation (light) curves at high solar phase angles constrain period and shape
- Astrometry enables Earth-based occultation observations by small KBOs \rightarrow shape and size \rightarrow albedo

Cold Classical KBOs Plutinos Centaurs Jupiter Trojans Scattered Disk (other) Resonant KBO

Credit: Wes Fraser

New Horizons 'Distant' KBOs & Dwarf Planets (unresolved, point source observations)

Cold Classical	Hot Classical	Scattered Disk	Resonant	Large KBO $(H_V < 5)$	Dwarf Planet	Centaur
					·	
2004 LVV ₃₁	2012 HZ ₈₄	2011 HK ₁₀₃	2012 HE ₈₅	Quaoar	Eris	Chiron
2011 HF ₁₀₃	2011 HJ ₁₀₃	2014 OJ ₃₉₄	2018 MG ₁₃	Ixion	Makemake	2010 JJ ₁₂₄
2011 HZ ₁₀₂		2020 KV ₁₁	2020 KS ₁₁	2014 OE ₃₉₄	Haumea	
2011 JA ₃₂		2020 KP ₁₁		2002 KX ₁₄		
2011 JW ₃₁		2020 KH ₄₂		2002 MS ₄		
2011 JX ₃₁		2020 KT ₁₁				
2011 JY ₃₁						
2014 OS ₃₉₃						
2014 PN ₇₀						
2018 MF ₁₃						
2020 KR ₁₁						

New Horizons KBO Survey

- >30 KBOs, dwarf planets observed so far: 13 classical, 6 scattered (SDO), 3 resonant, 8 large (dwarf planets), 2 centaurs
- New Horizons is currently at 58 au and will be sampling more SDOs until it leaves the Kuiper Belt
- Going forward, bias towards bigger KBOs that will have longer observation windows, giving broader phase coverage

New Horizons KBO Survey

- >30 KBOs, dwarf planets observed so far: 13 classical, 6 scattered (SDO), 3 resonant, 8 large (dwarf planets), 2 centaurs
- New Horizons is currently at 58 au and will be sampling more SDOs until it leaves the Kuiper Belt
- Going forward, bias towards bigger KBOs that will have longer observation windows, giving broader phase coverage

Preliminary Result: KBOs Discovered by Subaru HSC in 2021 and 2022

176 KBOs discovered in 2021 and 2022 (orange and blue dots, respectively) at the point on their orbits (orange and blue lines) when the New Horizons spacecraft is closest to them. Black line is the spacecraft trajectory with the current heliocentric position shown by the black dot at 55 au. The spacecraft will pass 60 au in October 2024.

Photometric Properties of Kuiper Belt Object (KBO) Surfaces: Determine physical surface properties by measuring reflected sunlight at multiple viewing and illumination geometries

The success with which a photometric model can determine physical surface properties depends upon the availability of observations at the broadest range of solar phase, incidence, and emission angles. 'Disk'-integrated, or 'whole-disk' solar phase curves – reflectance vs. solar phase angle (α) 'Disk'-resolved observations from close flybys by a spacecraft

Hapke (2012) Photometric Parameters:

- •

•

igodot

Single scattering albedo (scattering:extinction efficiency) Opposition effect (increase in reflectance as $\alpha \rightarrow 0^{\circ}$) width and amplitude (porosity, particle transparency) Macroscopic roughness (mean topographic slopes) Directional parameters (backward or forward scattering) for Single Particles

particle transparency (internal scatterers) euhedral (smooth), irregular (rougher) particles

Photometric Properties of Kuiper Belt Object (KBO) Surfaces Determine physical surface properties by measuring reflected sunlight at multiple viewing and illumination geometries

Reflectivity, or albedo composition • How to measure size?

- Provides first, rudimentary measure of surface
 - Bright \rightarrow volatiles, ices
 - Dark \rightarrow tholins, amorphous C, non-volatiles
- Geometric albedo, p, defined as reflectivity at
- opposition (phase angle $\alpha = 0^{\circ}$) relative to a flat,
- perfectly diffusing disk of the same size

 - Direct imaging: s/c flyby; larger KBOs (HST)
 - Infer size from apparent magnitude to get absolute magnitude Stellar occultations (e.g. Arrokoth, dwarf planets) + shape • Thermal emission (Herschel, Spitzer, ALMA)

 ALMA – already observed 2 out of 3 planned NH KBOs: Plutino (15810) Arawn – May 2018 – 200 km diameter SDO 2014 OJ394 - December 2023 - analysis ongoing Classical 2014 OE394 - TBD

NH LORRI Cold Classical KBO Rotation Curves

Double-peaked rotation curves

Rotation periods: 12.1 – 49.2 h

Total amplitudes: 0.2 – 2 magnitudes

Amplitudes vs. phase angle:

Increase: 2014 PN70, 2011 HF103

May Increase?: 2011 JX31, 2011 JW31, 2004 LW31, 2014 OS393, 2011 HZ102

Constant: 2011 JY31 (Binary KBO, Weaver et al. 2022)

Note: 2014 OS393 images hinted at binarity; long rotation period!

Assuming uniform surface albedo, these curves constrain shape and rotation pole (Porter et al. LPSC 2022)

Rotation curves enable accurate placement of points on solar phase curves if cadence and sampling will throw off simply averaging all observations at a given α .

Haumea Shape and Pole

Dwarf Planet Haumea 2100 x 1680 x 1074 km

 New Horizons can acquire another Haumea rotation curve at a higher phase angle, $\alpha = 60^{\circ}$, in early 2027.

 Also extend Haumea's phase curve to 60°

Disk-Integrated Solar Phase Curves of KBOs at Large Phase Angles

- All data $\alpha > 2^{\circ}$ from New Horizons and Voyager 2 (Triton). All data normalized to magnitude 0 at opposition (to compare phase curve shapes)
- Solid lines are fits to Hapke (2012) ulletphotometric model
- Highly volatile ices (N₂, CH₄, etc.) have ulletshallowest phase curve slopes (red).
- H₂O (blue) intermediate slopes ightarrow
- Non-volatile surfaces (black) have steepest \bullet slopes

Cold Classical (CC) KBO Solar Phase Curves

- NH CCKBOs have similarly-shaped solar phase curves. (Corrected for rotation light curves.)
- Solid line is fit to Hapke (2012) photometric model
 - Single scattering albedo = 0.09
 - Photometric roughness 25° (mean topographic slope angle)
- All data normalized to magnitude 0 at opposition (to compare phase curve shapes), but all geometric albedos are still assumed, not measured.

Cold Classical (CC) KBO Solar Phase Curves

- Arrokoth's solar phase curve matches those of other cold classical KBOs
- New Horizons found no strong indication of H₂O ice on Arrokoth's surface, more CH₃OH, remnants of volatiles being removed (red color)

NH KBO Solar Phase Curves

- No longer going to observe 2020 KS11 at closest approach in March 2024
- 2020 KS11 has the largest aphelion distance of all NH KBOs (so far)
- 2020 KV11 closest approach is July 2027

NH KBO Solar Phase Curves

- New Horizons can observe 2020 KV11 as early as November 2024 when the phase angle will be 1.8 degrees, V magnitude = 21.
- Phase angle increases, V magnitude decreases (until July 2027)
- Now the ONLY opportunity that we have in hand to study space weathering via diskintegrated phase curve modeling of a KBO that has ventured beyond the Heliopause.

